AoPS Community

Estonia Team Selection Test 2017

www.artofproblemsolving.com/community/c1237838
by parmenides51, mathwizard888, cjquines0

- Day 1

1 Do there exist two positive powers of 5 such that the number obtained by writing one after the other is also a power of 5 ?

2 Find the smallest constant $C>0$ for which the following statement holds: among any five positive real numbers $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ (not necessarily distinct), one can always choose distinct subscripts i, j, k, l such that

$$
\left|\frac{a_{i}}{a_{j}}-\frac{a_{k}}{a_{l}}\right| \leq C .
$$

3 Let $A B C$ be a triangle with $A B=A C \neq B C$ and let I be its incentre. The line $B I$ meets $A C$ at D, and the line through D perpendicular to $A C$ meets $A I$ at E. Prove that the reflection of I in $A C$ lies on the circumcircle of triangle $B D E$.

- Day 2

4 Let $A B C$ be an isosceles triangle with apex A and altitude $A D$. On $A B$, choose a point F distinct from B such that $C F$ is tangent to the incircle of $A B D$. Suppose that $\triangle B C F$ is isosceles. Show that those conditions uniquely determine:
a) which vertex of $B C F$ is its apex,
b) the size of $\angle B A C$

5 The leader of an IMO team chooses positive integers n and k with $n>k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an n-digit binary string, and the deputy leader writes down all n-digit binary strings which differ from the leader's in exactly k positions. (For example, if $n=3$ and $k=1$, and if the leader chooses 101, the deputy leader would write down 001,111 and 100.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader's string. What is the minimum number of guesses (in terms of n and k) needed to guarantee the correct answer?

6 Find all functions $f:(0, \infty) \rightarrow(0, \infty)$ such that for any $x, y \in(0, \infty)$,

$$
x f\left(x^{2}\right) f(f(y))+f(y f(x))=f(x y)\left(f\left(f\left(x^{2}\right)\right)+f\left(f\left(y^{2}\right)\right)\right) .
$$

AoPS Community

- Day 3

7 Let n be a positive integer. In how many ways can an $n \times n$ table be filled with integers from 0 to 5 such that
a) the sum of each row is divisible by 2 and the sum of each column is divisible by 3
b) the sum of each row is divisible by 2 , the sum of each column is divisible by 3 and the sum of each of the two diagonals is divisible by 6 ?

8 Let a, b, c be positive real numbers such that $\min (a b, b c, c a) \geq 1$. Prove that

$$
\sqrt[3]{\left(a^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right)} \leq\left(\frac{a+b+c}{3}\right)^{2}+1
$$

Proposed by Tigran Margaryan, Armenia

9 Let $B=(-1,0)$ and $C=(1,0)$ be fixed points on the coordinate plane. A nonempty, bounded subset S of the plane is said to be nice if
(i) there is a point T in S such that for every point Q in S, the segment $T Q$ lies entirely in S; and
(ii) for any triangle $P_{1} P_{2} P_{3}$, there exists a unique point A in S and a permutation σ of the indices $\{1,2,3\}$ for which triangles $A B C$ and $P_{\sigma(1)} P_{\sigma(2)} P_{\sigma(3)}$ are similar.
Prove that there exist two distinct nice subsets S and S^{\prime} of the set $\{(x, y): x \geq 0, y \geq 0\}$ such that if $A \in S$ and $A^{\prime} \in S^{\prime}$ are the unique choices of points in (ii), then the product $B A \cdot B A^{\prime}$ is a constant independent of the triangle $P_{1} P_{2} P_{3}$.

- Day 4

10 Let $A B C$ be a triangle with $A B=\frac{A C}{2}+B C$. Consider the two semicircles outside the triangle with diameters $A B$ and $B C$. Let X be the orthogonal projection of A onto the common tangent line of those semicircles. Find $\angle C A X$.

11 For any positive integer k, denote the sum of digits of k in its decimal representation by $S(k)$. Find all polynomials $P(x)$ with integer coefficients such that for any positive integer $n \geq 2016$, the integer $P(n)$ is positive and

$$
S(P(n))=P(S(n)) .
$$

Proposed by Warut Suksompong, Thailand

12 Let $n \geq 3$ be a positive integer. Find the maximum number of diagonals in a regular n-gon one can select, so that any two of them do not intersect in the interior or they are perpendicular to each other.

