AoPS Community

Saudi Arabia Team Selection Test for Balkan Math Olympiad 2015

www.artofproblemsolving.com/community/c1239345
by parmenides51

- Day I

1 Prove that for any integer $n \geq 2$, there exists a unique finite sequence $x_{0}, x_{1}, \ldots, x_{n}$ of real numbers which satisfies $x_{0}=x_{n}=0$ and $x_{i+1}-8 x_{i}^{3}-4 x_{i}+3 x_{i-1}+1=0$ for all $i=1,2, \ldots, n-1$. Prove moreover that $\left|x_{i}\right| \leq \frac{1}{2}$ for all $i=1,2, \ldots, n-1$.
Nguy n Duy Thi Sn
2 Given 2015 subsets $A_{1}, A_{2}, \ldots, A_{2015}$ of the set $\{1,2, \ldots, 1000\}$ such that $\left|A_{i}\right| \geq 2$ for every $i \geq 1$ and $\left|A_{i} \cap A_{j}\right| \geq 1$ for every $1 \leq i<j \leq 2015$. Prove that $k=3$ is the smallest number of colors such that we can always color the elements of the set $\{1,2, \ldots, 1000\}$ by k colors with the property that the subset A_{i} has at least two elements of different colors for every $i \geq 1$.

L Anh Vinh

3 Let $A B C$ be a triangle, Γ its circumcircle, I its incenter, and ω a tangent circle to the line $A I$ at I and to the side $B C$. Prove that the circles Γ and ω are tangent.
Malik Talbi
4 Let $n \geq 2$ be an integer and $p_{1}<p_{2}<\ldots<p_{n}$ prime numbers. Prove that there exists an integer k relatively prime with $p_{1} p_{2} \ldots p_{n}$ and such that $\operatorname{gcd}\left(k+p_{1} p_{2} \ldots p_{i}, p_{1} p_{2} \ldots p_{n}\right)=1$ for all $i=1,2, \ldots, n-1$.

Malik Talbi

- Day II

1 Find all strictly increasing functions $f: Z \rightarrow R$ such that for any $m, n \in Z$ there exists a $k \in Z$ such that $f(k)=f(m)-f(n)$.
Nguy n Duy Thi Sn
2 Find the number of 6-tuples $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$ of distinct positive integers satisfying the following two conditions:
(a) $a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}=30$
(b) We can write $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ on sides of a hexagon such that after a finite number of time choosing a vertex of the hexagon and adding 1 to the two numbers written on two sides adjacent to the vertex, we obtain
a hexagon with equal numbers on its sides.

L Anh Vinh

3 Let $A B C$ be a triangle, H_{a}, H_{b} and H_{c} the feet of its altitudes from A, B and C, respectively, T_{a}, T_{b}, T_{c} its touchpoints of the incircle with the sides $B C, C A$ and $A B$, respectively. The circumcircles of triangles $A H_{b} H_{c}$ and $A T_{b} T_{c}$ intersect again at A^{\prime}. The circumcircles of triangles $B H_{c} H_{a}$ and $B T_{c} T_{a}$ intersect again at B^{\prime}. The circumcircles of triangles $C H_{a} H_{b}$ and $C T_{a} T_{b}$ intersect again at C^{\prime}. Prove that the points $A^{\prime}, B^{\prime}, C^{\prime}$ are collinear.
Malik Talbi
4 Prove that there exist infinitely many non prime positive integers n such that $7^{n-1}-3^{n-1}$ is divisible by n.
L Anh Vinh

