

Saudi Arabia IMO Team Selection Test 2015

www.artofproblemsolving.com/community/c1239350

AoPS Community

2015 Saudi Arabia IMO TST

by parmenides51	
-	Day I
1	Find all functions $f : R_{>0} \to R$ such that $f\left(\frac{x}{y}\right) = f(x) + f(y) - f(x)f(y)$ for all $x, y \in R_{>0}$. Here, $R_{>0}$ denotes the set of all positive real numbers.
	Nguy n Duy Thi Sn
2	Let ABC be a triangle with orthocenter H . Let P be any point of the plane of the triangle. Let Ω be the circle with the diameter AP . The circle Ω cuts CA and AB again at E and F , respectively. The line PH cuts Ω again at G . The tangent lines to Ω at E, F intersect at T . Let M be the midpoint of BC and L be the point on MG such that AL and MT are parallel. Prove that LA and LH are orthogonal.
	L Phc L
3	Let n and k be two positive integers. Prove that if n is relatively prime with 30, then there exist two integers a and b , each relatively prime with n , such that $\frac{a^2-b^2+k}{n}$ is an integer.
	Malik Talbi
-	Day II
1	Let <i>ABC</i> be an acute-angled triangle inscribed in the circle (<i>O</i>), <i>H</i> the foot of the altitude of <i>ABC</i> at <i>A</i> and <i>P</i> a point inside <i>ABC</i> lying on the bisector of $\angle BAC$. The circle of diameter <i>AP</i> cuts (<i>O</i>) again at <i>G</i> . Let <i>L</i> be the projection of <i>P</i> on <i>AH</i> . Prove that if <i>GL</i> bisects <i>HP</i> then <i>P</i> is the incenter of the triangle <i>ABC</i> .
	L Phc L
2	Hamza and Majid play a game on a horizontal 3×2015 white board. They alternate turns, with Hamza going first. A legal move for Hamza consists of painting three unit squares forming a horizontal 1×3 rectangle. A legal move for Majid consists of painting three unit squares forming a vertical 3×1 rectangle. No one of the two players is allowed to repaint already painted squares. The last player to make a legal move wins. Which of the two players, Hamza or Majid, can guarantee a win no matter what strategy his opponent chooses and what is his strategy to guarantee a win?

L Anh Vinh

AoPS Community

2015 Saudi Arabia IMO TST

3	Let $a_1, a_2,, a_n$ be positive real numbers such that
	$a_1 + a_2 + \ldots + a_n = a_1^2 + a_2^2 + \ldots + a_n^2$
	Prove that $\sum_{1 \leq i < j \leq n} a_i a_j (1-a_i a_j) \geq 0$
	V Quc B Cn.
-	Day III
1	Let <i>S</i> be a positive integer divisible by all the integers $1, 2,, 2015$ and $a_1, a_2,, a_k$ numbers in $\{1, 2,, 2015\}$ such that $2S \le a_1 + a_2 + + a_k$. Prove that we can select from $a_1, a_2,, a_k$ some numbers so that the sum of these selected numbers is equal to <i>S</i> .
	L Anh Vinh
2	Let <i>ABC</i> be a triangle and ω its circumcircle. Point <i>D</i> lies on the arc <i>BC</i> (not containing <i>A</i>) of ω and is different from <i>B</i> , <i>C</i> and the midpoint of arc <i>BC</i> . The tangent line to ω at <i>D</i> intersects lines <i>BC</i> , <i>CA</i> , <i>AB</i> at <i>A'</i> , <i>B'</i> , <i>C'</i> respectively. Lines <i>BB'</i> and <i>CC'</i> intersect at <i>E</i> . Line <i>AA'</i> intersects again circle ω at <i>F</i> . Prove that the three points <i>D</i> , <i>E</i> , <i>F</i> are colinear.
	Malik Talbi
3	Find the number of binary sequences S of length 2015 such that for any two segments I_1, I_2 of S of the same length, we have The sum of digits of I_1 differs from the sum of digits of I_2 by at most 1, If I_1 begins on the left end of S then the sum of digits of I_1 is not greater than the sum of digits of I_2 ,
	If I_2 ends on the right end of S then the sum of digits of I_2 is not less than the sum of digits of
	I_1 . L Anh Vinh
	Day IV
1	Let a, b, c, d be positive integers such that $ac + bd$ is divisible by $a^2 + b^2$. Prove that $gcd(c^2 + d^2, a^2 + b^2) > 1$.
	Trn Nam Dng
2	The total number of languages used in KAUST is n . For each positive integer $k \le n$, let A_k be the set of all those people in KAUST who can speak at least k languages; and let B_k be the set of all people P in KAUST with the property that, for any k pairwise different languages (used in KAUST), P can speak at least one of these k languages. Prove that

AoPS Community

(a) If $2k \ge n+1$ then $A_k \subseteq B_k$ (b) If $2k \le n+1$ then $A_k \supseteq B_k$.

Nguy n Duy Thi Sn

3 Let *a*, *b*, *c* be positive real numbers satisfying the condition

$$(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) = 10$$

Find the greatest value and the least value of

$$T = (x^2 + y^2 + z^2) \left(\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2}\right)$$

Trn Nam Dng

AoPS Online 🔯 AoPS Academy 🙋 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.