Art of Problem Solving

AoPS Community

Saudi Arabia IMO Team Selection Test 2015

www.artofproblemsolving.com/community/c1239350
by parmenides51

- Dayl

1 Find all functions $f: R_{>0} \rightarrow R$ such that $f\left(\frac{x}{y}\right)=f(x)+f(y)-f(x) f(y)$ for all $x, y \in R_{>0}$. Here, $R_{>0}$ denotes the set of all positive real numbers.
Nguy n Duy Thi Sn
2 Let $A B C$ be a triangle with orthocenter H. Let P be any point of the plane of the triangle. Let Ω be the circle with the diameter $A P$. The circle Ω cuts $C A$ and $A B$ again at E and F, respectively. The line $P H$ cuts Ω again at G. The tangent lines to Ω at E, F intersect at T. Let M be the midpoint of $B C$ and L be the point on $M G$ such that $A L$ and $M T$ are parallel. Prove that $L A$ and $L H$ are orthogonal.

L Phc L
3 Let n and k be two positive integers. Prove that if n is relatively prime with 30 , then there exist two integers a and b, each relatively prime with n, such that $\frac{a^{2}-b^{2}+k}{n}$ is an integer.
Malik Talbi

- Day II

1 Let $A B C$ be an acute-angled triangle inscribed in the circle $(O), H$ the foot of the altitude of $A B C$ at A and P a point inside $A B C$ lying on the bisector of $\angle B A C$. The circle of diameter $A P$ cuts (O) again at G. Let L be the projection of P on $A H$. Prove that if $G L$ bisects $H P$ then P is the incenter of the triangle $A B C$.

L Phc L
2 Hamza and Majid play a game on a horizontal 3×2015 white board. They alternate turns, with Hamza going first. A legal move for Hamza consists of painting three unit squares forming a horizontal 1×3 rectangle. A legal move for Majid consists of painting three unit squares forming a vertical 3×1 rectangle. No one of the two players is allowed to repaint already painted squares. The last player to make a legal move wins. Which of the two players, Hamza or Majid, can guarantee a win no matter what strategy his opponent chooses and what is his strategy to guarantee a win?

L Anh Vinh

AoPS Community

3 Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers such that

$$
a_{1}+a_{2}+\ldots+a_{n}=a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}
$$

Prove that

$$
\sum_{1 \leq i<j \leq n} a_{i} a_{j}\left(1-a_{i} a_{j}\right) \geq 0
$$

V Quc B Cn.

- Day III

1 Let S be a positive integer divisible by all the integers $1,2, \ldots, 2015$ and $a_{1}, a_{2}, \ldots, a_{k}$ numbers in $\{1,2, \ldots, 2015\}$ such that $2 S \leq a_{1}+a_{2}+\ldots+a_{k}$. Prove that we can select from $a_{1}, a_{2}, \ldots, a_{k}$ some numbers so that the sum of these selected numbers is equal to S.
L Anh Vinh
2 Let $A B C$ be a triangle and ω its circumcircle. Point D lies on the arc $B C$ (not containing A) of ω and is different from B, C and the midpoint of arc $B C$. The tangent line to ω at D intersects lines $B C, C A, A B$ at $A^{\prime}, B^{\prime}, C^{\prime}$ respectively. Lines $B B^{\prime}$ and $C C^{\prime}$ intersect at E. Line $A A^{\prime}$ intersects again circle ω at F. Prove that the three points D, E, F are colinear.
Malik Talbi
3 Find the number of binary sequences S of length 2015 such that for any two segments I_{1}, I_{2} of S of the same length, we have The sum of digits of I_{1} differs from the sum of digits of I_{2} by at most 1 , If I_{1} begins on the left end of S then the sum of digits of I_{1} is not greater than the sum of digits of I_{2},
If I_{2} ends on the right end of S then the sum of digits of I_{2} is not less than the sum of digits of I_{1}.

L Anh Vinh

- Day IV

1 Let a, b, c, d be positive integers such that $a c+b d$ is divisible by $a^{2}+b^{2}$. Prove that $g c d\left(c^{2}+\right.$ $\left.d^{2}, a^{2}+b^{2}\right)>1$.
Trn Nam Dng
2 The total number of languages used in KAUST is n. For each positive integer $k \leq n$, let A_{k} be the set of all those people in KAUST who can speak at least k languages; and let B_{k} be the set of all people P in KAUST with the property that, for any k pairwise different languages (used in KAUST), P can speak at least one of these k languages. Prove that
(a) If $2 k \geq n+1$ then $A_{k} \subseteq B_{k}$
(b) If $2 k \leq n+1$ then $A_{k} \supseteq B_{k}$.

Nguy n Duy Thi Sn
3 Let a, b, c be positive real numbers satisfying the condition

$$
(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=10
$$

Find the greatest value and the least value of

$$
T=\left(x^{2}+y^{2}+z^{2}\right)\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}\right)
$$

Trn Nam Dng

