Art of Problem Solving

AoPS Community

Saudi Arabia Team Selection Test for Balkan Math Olympiad 2017

www.artofproblemsolving.com/community/c1239500
by parmenides51

- Day I

1 Let $n=p_{1} p_{2} \ldots p_{2017}$ be the positive integer where $p_{1}, p_{2}, \ldots, p_{2017}$ are 2017 distinct odd primes. A triangle is called nice if it is a right triangle with integer side lengths and the inradius is n. Find the number of nice triangles (two triangles are consider different if their tuples of length of sides are different)

2 Let $A B C$ be an acute triangle with $A T, A S$ respectively are the internal, external angle bisector of $A B C$ and $T, S \in B C$. On the circle with diameter $T S$, take an arbitrary point P that lies inside the triangle ABC. Denote D, E, F, I as the incenter of triangle $P B C, P C A, P A B, A B C$. Prove that four lines $A D, B E, C F$ and $I P$ are concurrent.

3 How many ways are there to insert plus signs + between the digits of number 111111... 111 which includes thirty of digits 1 so that the result will be a multiple of 30 ?

4 Fibonacci sequences is defined as $f_{1}=1, f_{2}=2, f_{n+1}=f_{n}+f_{n-1}$ for $n \geq 2$.
a) Prove that every positive integer can be represented as sum of several distinct Fibonacci number.
b) A positive integer is called Fib-unique if the way to represent it as sum of several distinct Fibonacci number is unique. Example: 13 is not Fib-unique because $13=13=8+5=8+3+2$. Find all Fib-unique.

- Day II

1 Find the smallest prime q such that

$$
q=a_{1}^{2}+b_{1}^{2}=a_{2}^{2}+2 b_{2}^{2}=a_{3}^{2}+3 b_{3}^{2}=\ldots=a_{10}^{2}+10 b_{10}^{2}
$$

where $a_{i}, b_{i}(i=1,2, \ldots, 10)$ are positive integers
2 Polynomial $\mathrm{P}(\mathrm{x})$ with integer coefficient is called cube-presented if it can be represented as sum of several cube of polynomials with integer coefficients.
Examples: $3 x+3 x^{2}$ is cube-represented because $3 x+3 x^{2}=(x+1)^{3}+(-x)^{3}+(-1)^{3}$.
a) Is $3 x^{2}$ a cube-represented polynomial?
b). How many quadratic polynomial $\mathrm{P}(\mathrm{x})$ with integer coefficients belong to the set $\{1,2,3, \ldots, 2017\}$ which is cube-represented?

AoPS Community

2017 Saudi Arabia BMO TST

3 We put four numbers $1,2,3,4$ around a circle in order. One starts at the number 1 and every step, he moves to an adjacent number on either side. How many ways he can move such that sum of the numbers he visits in his path (including the starting number) is equal to 21 ?

4 Let $A B C$ be a triangle with A is an obtuse angle. Denote $B E$ as the internal angle bisector of triangle $A B C$ with $E \in A C$ and suppose that $\angle A E B=45^{\circ}$. The altitude $A D$ of triangle $A B C$ intersects $B E$ at F. Let O_{1}, O_{2} be the circumcenter of triangles $F E D, E D C$. Suppose that $E O_{1}, E O_{2}$ meet $B C$ at G, H respectively. Prove that $\frac{G H}{G B}=\tan \frac{a}{2}$

- Mock BMO

- Day I

1 Prove that there are infinitely many positive integer n such that n ! is divisible by $n^{3}-1$.
2 Let R^{+}be the set of positive real numbers. Find all function $f: R^{+} \rightarrow R$ such that, for all positive real number x and y, the following conditions are satisfied:
i) $2 f(x)+2 f(y) \leq f(x+y)$
ii) $(x+y)[y f(x)+x f(y)] \geq x y f(x+y)$

3 Let $A B C$ be an acute triangle and (O) be its circumcircle. Denote by H its orthocenter and I the midpoint of $B C$. The lines $B H, C H$ intersect $A C, A B$ at E, F respectively. The circles $(I B F)$ and $(I C E)$ meet again at D.
a) Prove that D, I, A are collinear and $H D, E F, B C$ are concurrent.
b) Let L be the foot of the angle bisector of $\angle B A C$ on the side $B C$. The circle ($A D L$) intersects (O) again at K and intersects the line $B C$ at S out of the side $B C$. Suppose that $A K, A S$ intersects the circles $(A E F)$ again at G, T respectively. Prove that $T G=T D$.

4 Consider the set $X=\{1,2,3, \ldots, 2018\}$.
How many positive integers k with $2 \leq k \leq 2017$ that satisfy the following conditions:
i) There exists some partition of the set X into 1009 disjoint pairs which are $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{1009}, b_{1009}\right)$ with $\left|a_{i}-b_{i}\right| \in\{1, k\}$.
ii) For all partitions satisfy the condition (i), the sum $T=\sum_{i=1}^{1009}\left|a_{i}-b_{i}\right|$ has the right most digit is 9

- Day II

1 Let a, b, c be positive real numbers. Prove that

$$
\frac{a\left(b^{2}+c^{2}\right)}{(b+c)\left(a^{2}+b c\right)}+\frac{b\left(c^{2}+a^{2}\right)}{(c+a)\left(b^{2}+c a\right)}+\frac{c\left(a^{2}+b^{2}\right)}{(a+b)\left(c^{2}+a b\right)} \geq \frac{3}{2}
$$

2 Solve the following equation in positive integers x, y : $x^{2017}-1=(x-1)\left(y^{2015}-1\right)$
3 Let $A B C D$ be a cyclic quadrilateral and triangles $A C D, B C D$ are acute. Suppose that the lines $A B$ and $C D$ meet at S. Denote by E the intersection of $A C, B D$. The circles $(A D E)$ and ($B C E$) meet again at F.
a) Prove that $S F \perp E F$.
b) The point G is taken out side of the quadrilateral $A B C D$ such that triangle $G A B$ and $F D C$ are similar. Prove that $G A+F B=G B+F A$

4 Let p be a prime number and a table of size $\left(p^{2}+p+1\right) \times\left(p^{2}+p+1\right)$ which is divided into unit cells. The way to color some cells of this table is called nice if there are no four colored cells that form a rectangle (the sides of rectangle are parallel to the sides of given table).

1. Let k be the number of colored cells in some nice coloring way. Prove that $k \leq(p+1)\left(p^{2}+\right.$ $p+1$). Denote this number as $k_{\text {max }}$.
2. Prove that all ordered tuples (a, b, c) with $0 \leq a, b, c<p$ and $a+b+c>0$ can be partitioned into $p^{2}+p+1$ sets $S_{1}, S_{2}, \ldots S_{p^{2}+p+1}$ such that two tuples $\left(a_{1}, b_{1}, c_{1}\right)$ and $\left(a_{2}, b_{2}, c_{2}\right)$ belong to the same set if and only if $a_{1} \equiv k a_{2}, b_{1} \equiv k b_{2}, c_{1} \equiv k c_{2}(\bmod p)$ for some $k \in\{1,2,3, \ldots, p-1\}$. 3. For $1 \leq i, j \leq p^{2}+p+1$, if there exist $\left(a_{1}, b_{1}, c_{1}\right) \in S_{i}$ and $\left(a_{2}, b_{2}, c_{2}\right) \in S_{j}$ such that $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} \equiv 0(\bmod p)$, we color the cell (i, j) of the given table. Prove that this coloring way is nice with $k_{\max }$ colored cells
