AoPS Community

Saudi Arabia Team Selection Test for Balkan Math Olympiad 2018

www.artofproblemsolving.com/community/c1239840
by parmenides51

- Day I

1 Find the smallest positive integer n which can not be expressed as $n=\frac{2^{a}-2^{b}}{2^{c}-2^{d}}$ for some positive integers a, b, c, d

2 Find all functions $f: R \rightarrow R$ such that $f\left(2 x^{3}+f(y)\right)=y+2 x^{2} f(x)$ for all real numbers x, y.
3 The partition of $2 n$ positive integers into n pairs is called square-free if the product of numbers in each pair is not a perfect square. Prove that if for $2 n$ distinct positive integers, there exists one square-free partition, then there exists at least n ! square-free partitions.

4 Let $A B C$ be an acute, non isosceles with I is its incenter. Denote D, E as tangent points of (I) on $A B, A C$, respectively. The median segments respect to vertex A of triangles $A B E$ and $A C D$ meet (I) at P, Q, respectively. Take points M, N on the line $D E$ such that $A M \perp B E$ and $A N \perp C D$ respectively.
a) Prove that A lies on the radical axis of $(M I P)$ and $(N I Q)$.
b) Suppose that the orthocenter H of triangle $A B C$ lies on (I). Prove that there exists a line which is tangent to three circles of center A, B, C and all pass through H.

- Day II

1 Let $A B C$ be a triangle with M, N, P as midpoints of the segments $B C, C A, A B$ respectively. Suppose that I is the intersection of angle bisectors of $\angle B P M, \angle M N P$ and J is the intersection of angle bisectors of $\angle C N M, \angle M P N$. Denote $\left(\omega_{1}\right)$ as the circle of center I and tangent to $M P$ at $D,\left(\omega_{2}\right)$ as the circle of center J and tangent to $M N$ at E.
a) Prove that $D E$ is parallel to $B C$.
b) Prove that the radical axis of two circles $\left(\omega_{1}\right),\left(\omega_{2}\right)$ bisects the segment $D E$.

2 Suppose that 2018 numbers 1 and -1 are written around a circle. For every two adjacent numbers, their product is taken. Suppose that the sum of all 2018 products is negative. Find all possible values of sum of 2018 given numbers.
$3 \quad$ Find all positive integers n such that $\phi(n)$ is a divisor of $n^{2}+3$.
$4 \quad$ Find all functions $f: Z \rightarrow Z$ such that $x f(2 f(y)-x)+y^{2} f(2 x-f(y))=\frac{(f(x))^{2}}{x}+f(y f(y))$, for all $x, y \in Z, x \neq 0$.

