

Saudi Arabia Team Selection Test for Balkan Math Olympiad 2018

www.artofproblemsolving.com/community/c1239840

## **AoPS Community**

## 2018 Saudi Arabia BMO TST

| by parmenides51 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -               | Day I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1               | Find the smallest positive integer $n$ which can not be expressed as $n = \frac{2^a - 2^b}{2^c - 2^d}$ for some positive integers $a, b, c, d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2               | Find all functions $f : R \to R$ such that $f(2x^3 + f(y)) = y + 2x^2f(x)$ for all real numbers $x, y$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3               | The partition of $2n$ positive integers into $n$ pairs is called <i>square-free</i> if the product of numbers in each pair is not a perfect square.Prove that if for $2n$ distinct positive integers, there exists one square-free partition, then there exists at least $n!$ square-free partitions.                                                                                                                                                                                                                                                                                                                                                                              |
| 4               | Let $ABC$ be an acute, non isosceles with $I$ is its incenter. Denote $D, E$ as tangent points of $(I)$ on $AB, AC$ , respectively. The median segments respect to vertex $A$ of triangles $ABE$ and $ACD$ meet $(I)$ at $P, Q$ , respectively. Take points $M, N$ on the line $DE$ such that $AM \perp BE$ and $AN \perp CD$ respectively.<br>a) Prove that $A$ lies on the radical axis of $(MIP)$ and $(NIQ)$ .<br>b) Suppose that the orthocenter $H$ of triangle $ABC$ lies on $(I)$ . Prove that there exists a line which is tangent to three circles of center $A, B, C$ and all pass through $H$ .                                                                        |
| -               | Day II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1               | Let <i>ABC</i> be a triangle with <i>M</i> , <i>N</i> , <i>P</i> as midpoints of the segments <i>BC</i> , <i>CA</i> , <i>AB</i> respectively.<br>Suppose that <i>I</i> is the intersection of angle bisectors of $\angle BPM$ , $\angle MNP$ and <i>J</i> is the intersection of angle bisectors of $\angle CNM$ , $\angle MPN$ . Denote $(\omega_1)$ as the circle of center <i>I</i> and tangent to <i>MP</i> at <i>D</i> , $(\omega_2)$ as the circle of center <i>J</i> and tangent to <i>MN</i> at <i>E</i> .<br>a) Prove that <i>DE</i> is parallel to <i>BC</i> .<br>b) Prove that the radical axis of two circles $(\omega_1), (\omega_2)$ bisects the segment <i>DE</i> . |
| 2               | Suppose that $2018$ numbers 1 and $-1$ are written around a circle. For every two adjacent numbers, their product is taken. Suppose that the sum of all $2018$ products is negative. Find all possible values of sum of $2018$ given numbers.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3               | Find all positive integers $n$ such that $\phi(n)$ is a divisor of $n^2 + 3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4               | Find all functions $f: Z \to Z$ such that $xf(2f(y) - x) + y^2f(2x - f(y)) = \frac{(f(x))^2}{x} + f(yf(y))$ , for all $x, y \in Z$ , $x \neq 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## 🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.