Art of Problem Solving

AoPS Community

Saudi Arabia IMO Team Selection Test 2017

www.artofproblemsolving.com/community/c1239918
by parmenides51, quangminhltv99

- DayI

1 Let $A B C$ be a triangle inscribed in circle (O), with its altitudes $B E, C F$ intersect at orthocenter $H(E \in A C, F \in A B)$. Let M be the midpoint of $B C, K$ be the orthogonal projection of H on $A M$. EF intersects $B C$ at P. Let Q be the intersection of tangent of (O) which passes through A with $B C, T$ be the reflection of Q through P. Prove that $\angle O K T=90^{\circ}$.

2 Find all $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying:

$$
f(x f(y)-y)+f(x y-x)+f(x+y)=2 x y, \quad \forall x, y \in \mathbb{R}
$$

3 Prove that there are infinitely many positive integers n such that n divides $2017^{2017^{n}}-1-1$ but n does not divide 2017^{n} - 1 .

- Day II

1 In the garden of Wonderland, there are 2016 apples, 2017 bananas and 2018 oranges. Two monkeys Adu and Bakar play the following game: alternatively each of them takes and eats one fruit of any kind except for the one that he took in previous turn (in the first turn, each of them can take a fruit of any kind). Who can not take a fruit is the loser. Which monkey has the winning strategy if Adu plays first?

2 Let $A B C D$ be the circumscribed quadrilateral with the incircle (I). The circle (I) touches $A B, B C, C D, D A$ at M, N, P, Q respectively. Let K and L be the circumcenters of the triangles $A M N$ and $A P Q$ respectively. The line $K L$ cuts the line $B D$ at R. The line $A I$ cuts the line $M Q$ at J. Prove that $R A=R J$.

3 Find the greatest positive real number M such that for all positive real sequence $\left(a_{n}\right)$ and for all real number $m<M$, it is possible to find some index $n \geq 1$ that satisfies the inequality $a_{1}+a_{2}+a_{3}+\ldots+a_{n}+a_{n+1}>m a_{n}$.

- Day III

1 For any positive integer k, denote the sum of digits of k in its decimal representation by $S(k)$. Find all polynomials $P(x)$ with integer coefficients such that for any positive integer $n \geq 2017$, the integer $P(n)$ is positive and $S(P(n))=P(S(n))$.

2 Let $A B C D$ be a quadrilateral inscribed a circle (O). Assume that $A B$ and $C D$ intersect at $E, A C$ and $B D$ intersect at K, and O does not belong to the line $K E$. Let G and H be the midpoints of $A B$ and $C D$ respectively. Let (I) be the circumcircle of the triangle $G K H$. Let (I) and (O) intersect at M, N such that $M G H N$ is convex quadrilateral. Let P be the intersection of $M G$ and $H N, Q$ be the intersection of $M N$ and $G H$.
a) Prove that $I K$ and $O E$ are parallel.
b) Prove that $P K$ is perpendicular to $I Q$.

3 The 64 cells of an 8×8 chessboard have 64 different colours. A Knight stays in one cell. In each move, the Knight jumps from one cell to another cell (the 2 cells on the diagonal of an 2×3 board) also the colours of the 2 cells interchange. In the end, the Knight goes to a cell having common side with the cell it stays at first. Can it happen that: there are exactly 3 cells having the colours different from the original colours?

- Day IV

1 Let a, b and c be positive real numbers such that $\min \{a b, b c, c a\} \geq 1$. Prove that

$$
\sqrt[3]{\left(a^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right)} \leq\left(\frac{a+b+c}{3}\right)^{2}+1
$$

2 Denote by $\{x\}$ the fractional part of a real number x, that is $\{x\}=x-\rfloor x\lfloor$ where $\rfloor x\lfloor$ is the maximum integer not greater than x. Prove that
a) For every integer n, we have $\{n \sqrt{17}\}>\frac{1}{2 \sqrt{17 n}}$
b) The value $\frac{1}{2 \sqrt{17}}$ is the largest constant c such that the inequality $\{n \sqrt{17}\}>c n$ holds for all positive integers n

3 For integer $n>1$, consider n cube polynomials $P_{1}(x), \ldots, P_{n}(x)$ such that each polynomial has 3 distinct real roots. Denote S as the set of roots of following equation $P_{1}(x) P_{2}(x) P_{3}(x) \ldots P_{n}(x)=$ 0.

It is also known that for each $1 \leq i<j \leq n, P_{i}(x) P_{j}(x)=0$ has 5 distinct real roots.

1. Prove that if for each $a, b \in S$, there is exactly one $i \in\{1,2,3, \ldots, n\}$ such that $P_{i}(a)=P_{i}(b)=$ 0 then $n=7$.
2. Prove that if $n>7$ then $|S|=2 n+1$.
