Art of Problem Solving

ELMO Problems 2020

www.artofproblemsolving.com/community/c1242622
by mcyoder, MarkBcc168

Day 1

P1 Let \mathbb{N} be the set of all positive integers. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
f^{f^{f(x)}(y)}(z)=x+y+z+1
$$

for all $x, y, z \in \mathbb{N}$.
Proposed by William Wang.
P2 Define the Fibonacci numbers by $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$. Let k be a positive integer. Suppose that for every positive integer m there exists a positive integer n such that $m \mid F_{n}-k$. Must k be a Fibonacci number?

Proposed by Fedir Yudin.
P3 Janabel has a device that, when given two distinct points U and V in the plane, draws the perpendicular bisector of $U V$. Show that if three lines forming a triangle are drawn, Janabel can mark the orthocenter of the triangle using this device, a pencil, and no other tools.

Proposed by Fedir Yudin.

Day 2

P4 Let acute scalene triangle $A B C$ have orthocenter H and altitude $A D$ with D on side $B C$. Let M be the midpoint of side $B C$, and let D^{\prime} be the reflection of D over M. Let P be point on line $D^{\prime} H$ such that lines $A P$ and $B C$ are parallel, and let the circumcircles of $\triangle A H P$ and $\triangle B H C$ meet again at $G \neq H$. Prove that $\angle M H G=90^{\circ}$.

Proposed by Daniel Hu.
P5 Let m and n be positive integers. Find the smallest positive integer s for which there exists an $m \times n$ rectangular array of positive integers such that
-each row contains n distinct consecutive integers in some order,
-each column contains m distinct consecutive integers in some order, and -each entry is less than or equal to s.

Proposed by Ankan Bhattacharya.

P6 For any positive integer n, let
$-\tau(n)$ denote the number of positive integer divisors of n,
$-\sigma(n)$ denote the sum of the positive integer divisors of n, and
$-\varphi(n)$ denote the number of positive integers less than or equal to n that are relatively prime to n.

Let $a, b>1$ be integers. Brandon has a calculator with three buttons that replace the integer n currently displayed with $\tau(n), \sigma(n)$, or $\varphi(n)$, respectively. Prove that if the calculator currently displays a, then Brandon can make the calculator display b after a finite (possibly empty) sequence of button presses.

Proposed by Jaedon Whyte.

