

AoPS Community

ELMO Problems 2020

_

_

www.artofproblemsolving.com/community/c1242622 by mcyoder, MarkBcc168

Day	1
P1	Let \mathbb{N} be the set of all positive integers. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that
	$f^{f^{f(x)}(y)}(z) = x + y + z + 1$
	for all $x, y, z \in \mathbb{N}$.
	Proposed by William Wang.
P2	Define the Fibonacci numbers by $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$. Let k be a positive integer. Suppose that for every positive integer m there exists a positive integer n such that $m F_n - k$. Must k be a Fibonacci number?
	Proposed by Fedir Yudin.
Р3	Janabel has a device that, when given two distinct points U and V in the plane, draws the perpendicular bisector of UV . Show that if three lines forming a triangle are drawn, Janabel can mark the orthocenter of the triangle using this device, a pencil, and no other tools.
	Proposed by Fedir Yudin.
Day	2
Ρ4	Let acute scalene triangle <i>ABC</i> have orthocenter <i>H</i> and altitude <i>AD</i> with <i>D</i> on side <i>BC</i> . Let <i>M</i> be the midpoint of side <i>BC</i> , and let <i>D'</i> be the reflection of <i>D</i> over <i>M</i> . Let <i>P</i> be a point on line <i>D'H</i> such that lines <i>AP</i> and <i>BC</i> are parallel, and let the circumcircles of $\triangle AHP$ and $\triangle BHC$ meet again at $G \neq H$. Prove that $\angle MHG = 90^{\circ}$.
	Proposed by Daniel Hu.
P5	Let m and n be positive integers. Find the smallest positive integer s for which there exists an $m \times n$ rectangular array of positive integers such that
	-each row contains n distinct consecutive integers in some order, -each column contains m distinct consecutive integers in some order, and -each entry is less than or equal to s .
	Proposed by Ankan Bhattacharya.

AoPS Community

P6 For any positive integer *n*, let

 $-\tau(n)$ denote the number of positive integer divisors of n,

 $-\sigma(n)$ denote the sum of the positive integer divisors of n, and

 $-\varphi(n)$ denote the number of positive integers less than or equal to n that are relatively prime to n.

Let a, b > 1 be integers. Brandon has a calculator with three buttons that replace the integer n currently displayed with $\tau(n)$, $\sigma(n)$, or $\varphi(n)$, respectively. Prove that if the calculator currently displays a, then Brandon can make the calculator display b after a finite (possibly empty) sequence of button presses.

Proposed by Jaedon Whyte.

Act of Problem Solving is an ACS WASC Accredited School.