AoPS Community

IMC 2020

www.artofproblemsolving.com/community/c1243514
by Tintarn, skrublord420

- \quad Day 1 (July 26)

1 Let n be a positive integer. Compute the number of words w that satisfy the following three properties.

1. w consists of n letters from the alphabet $\{a, b, c, d\}$.
2. w contains an even number of a 's
3. w contains an even number of b 's.

For example, for $n=2$ there are 6 such words: $a a, b b, c c, d d, c d, d c$.
$2 A, B$ are $n \times n$ matrices such that $\operatorname{rank}(A B-B A+I)=1$. Prove that $\operatorname{tr}(A B A B)-\operatorname{tr}\left(A^{2} B^{2}\right)=$ $\frac{1}{2} n(n-1)$.

3 Let $d \geq 2$ be an integer. Prove that there exists a constant $C(d)$ such that the following holds: For any convex polytope $K \subset \mathbb{R}^{d}$, which is symmetric about the origin, and any $\varepsilon \in(0,1)$, there exists a convex polytope $L \subset \mathbb{R}^{d}$ with at most $C(d) \varepsilon^{1-d}$ vertices such that

$$
(1-\varepsilon) K \subseteq L \subseteq K
$$

Official definitions: For a real α, a set $T \in \mathbb{R}^{d}$ is a [i]convex polytope with at most α vertices[/i], if T is a convex hull of a set $X \in \mathbb{R}^{d}$ of at most α points, i.e. $T=\left\{\sum_{x \in X} t_{x} x \mid t_{x} \geq 0, \sum_{x \in X} t_{x}=1\right\}$. Define $\alpha K=\{\alpha x \mid x \in K\}$. A set $T \in \mathbb{R}^{d}$ is symmetric about the origin if $(-1) T=T$.
$4 \quad$ A polynomial p with real coefficients satisfies $p(x+1)-p(x)=x^{100}$ for all $x \in \mathbb{R}$. Prove that $p(1-t) \geq p(t)$ for $0 \leq t \leq 1 / 2$.

- \quad Day 2 (July 27)
$5 \quad$ Find all twice continuously differentiable functions $f: \mathbb{R} \rightarrow(0, \infty)$ satisfying $f^{\prime \prime}(x) f(x) \geq$ $2 f^{\prime}(x)^{2}$.
$6 \quad$ Find all prime numbers p such that there exists a unique $a \in \mathbb{Z}_{p}$ for which $a^{3}-3 a+1=0$.
$7 \quad$ Let G be a group and $n \geq 2$ be an integer. Let H_{1}, H_{2} be 2 subgroups of G that satisfy

$$
\left[G: H_{1}\right]=\left[G: H_{2}\right]=n \text { and }\left[G:\left(H_{1} \cap H_{2}\right)\right]=n(n-1) .
$$

Prove that H_{1}, H_{2} are conjugate in G.
Official definitions: $[G: H]$ denotes the index of the subgroup of H, i.e. the number of distinct left cosets $x H$ of H in G. The subgroups H_{1}, H_{2} are conjugate if there exists $g \in G$ such that $g^{-1} H_{1} g=H_{2}$.

8 Compute $\lim _{n \rightarrow \infty} \frac{1}{\log \log n} \sum_{k=1}^{n}(-1)^{k}\binom{n}{k} \log k$.

