Art of Problem Solving

AoPS Community

www.artofproblemsolving.com/community/c1251783
by Miku3D, Devastator, mcyoder

P1 The function $f(x)=x^{2}+\sin x$ and the sequence of positive numbers $\left\{a_{n}\right\}$ satisfy $a_{1}=1$, $f\left(a_{n}\right)=a_{n-1}$, where $n \geq 2$. Prove that there exists a positive integer n such that $a_{1}+a_{2}+\cdots+$ $a_{n}>2020$.

P2 In $\triangle A B C, A B>A C$. Let O and I be the circumcenter and incenter respectively. Prove that if $\angle A I O=30^{\circ}$, then $\angle A B C=60^{\circ}$.

P3 A set of k integers is said to be a complete residue system modulo k if no two of its elements are congruent modulo k. Find all positive integers m so that there are infinitely many positive integers n wherein $\left\{1^{n}, 2^{n}, \ldots, m^{n}\right\}$ is a complete residue system modulo m.

P4 Two students A and B play a game on a 20×20 chessboard. It is known that two squares are said to be adjacent if the two squares have a common side. At the beginning, there is a chess piece in a certain square of the chessboard. Given that A will be the first one to move the chess piece, A and B will alternately move this chess piece to an adjacent square. Also, the common side of any pair of adjacent squares can only be passed once. If the opponent cannot move anymore, then he will be declared the winner (to clarify since the wording wasnt that good, you lose if you cant move). Who among A and B has a winning strategy? Justify your claim.

P5 Find all positive integers a so that for any $\left\lfloor\frac{a+1}{2}\right\rfloor$-digit number that is composed of only digits 0 and 2 (where 0 cannot be the first digit) is not a multiple of a.

CNMO Basic Level

BP1 For all positive real numbers a, b, c, prove that

$$
\frac{a^{3}+b^{3}}{\sqrt{a^{2}-a b+b^{2}}}+\frac{b^{3}+c^{3}}{\sqrt{b^{2}-b c+c^{2}}}+\frac{c^{3}+a^{3}}{\sqrt{c^{2}-c a+a^{2}}} \geq 2\left(a^{2}+b^{2}+c^{2}\right)
$$

BP2 Given $a, b, c \in \mathbb{R}$ satisfying $a+b+c=a^{2}+b^{2}+c^{2}=1$, show that $\frac{-1}{4} \leq a b \leq \frac{4}{9}$.
BP3 Are there infinitely many positive integers n such that $19 \mid 1+2^{n}+3^{n}+4^{n}$? Justify your claim.
BP4 In $\triangle A B C, \angle B A C=60^{\circ}$, point D lies on side $B C, O_{1}$ and O_{2} are the centers of the circumcircles of $\triangle A B D$ and $\triangle A C D$, respectively. Lines $B O_{1}$ and $C O_{2}$ intersect at point P. If I is the incenter of $\triangle A B C$ and H is the orthocenter of $\triangle P B C$, then prove that the four points B, C, I, H are on the same circle.

BP5 It is known that subsets $A_{1}, A_{2}, \cdots, A_{n}$ of set $I=\{1,2, \cdots, 101\}$ satisfy the following condition

For any $i, j(1 \leq i<j \leq n)$, there exists $a, b \in A_{i} \cap A_{j}$ so that $(a, b)=1$
Determine the maximum positive integer n.

* (a, b) means $\operatorname{gcd}(a, b)$

