AoPS Community

South East Mathematical Olympiad 2020

www.artofproblemsolving.com/community/c1252089
by MarkBcc168, sqing, Rickyminer, RoinTnT

- \quad Grade 10
- Day 1

1 Let $f(x)=a(3 a+2 c) x^{2}-2 b(2 a+c) x+b^{2}+(c+a)^{2}(a, b, c \in R, a(3 a+2 c) \neq 0)$. If

$$
f(x) \leq 1
$$

for any real x, find the maximum of $|a b|$.
2 In a scalene triangle $\triangle A B C, A B<A C, P B$ and $P C$ are tangents of the circumcircle (O) of $\triangle A B C$. A point R lies on the arc $\widehat{A C}$ (not containing B), $P R$ intersects (O) again at Q. Suppose I is the incenter of $\triangle A B C, I D \perp B C$ at $D, Q D$ intersects (O) again at G. A line passing through I and perpendicular to $A I$ intersects $A B, A C$ at M, N, respectively. Prove that, if $A R \| B C$, then A, G, M, N are concyclic.

3 Given a polynomial $f(x)=x^{2020}+\sum_{i=0}^{2019} c_{i} x^{i}$, where $c_{i} \in\{-1,0,1\}$. Denote N the number of positive integer roots of $f(x)=0$ (counting multiplicity). If $f(x)=0$ has no negative integer roots, find the maximum of N.

4 Let $a_{1}, a_{2}, \ldots, a_{17}$ be a permutation of $1,2, \ldots, 17$ such that $\left(a_{1}-a_{2}\right)\left(a_{2}-a_{3}\right) \ldots\left(a_{17}-a_{1}\right)=n^{17}$.Find the maximum possible value of n.

- Day 2

5 Consider the set $I=\{1,2, \cdots, 2020\}$. Let $W=\{w(a, b)=(a+b)+a b \mid a, b \in I\} \cap I, Y=$ $\{y(a, b)=(a+b) \cdot a b \mid a, b \in I\} \cap I$ be its two subsets. Further, let $X=W \cap Y$.
(1) Find the sum of maximal and minimal elements in X.
(2) An element $n=y(a, b)(a \leq b)$ in Y is called excellent, if its representation is not unique (for instance, $20=y(1,5)=y(2,3)$). Find the number of excellent elements in Y.
(2) is only for Grade 11.

6 In a quadrilateral $A B C D, \angle A B C=\angle A D C<90^{\circ}$. The circle with diameter $A C$ intersects $B C$ and $C D$ again at E, F, respectively. M is the midpoint of $B D$, and $A N \perp B D$ at N.
Prove that M, N, E, F is concyclic.

7 Given any prime $p \geq 3$. Show that for all sufficient large positive integer x, at least one of $x+1, x+2, \cdots, x+\frac{p+3}{2}$ has a prime divisor greater than p.

8 Using a nozzle to paint each square in a $1 \times n$ stripe, when the nozzle is aiming at the i-th square, the square is painted black, and simultaneously, its left and right neighboring square (if exists) each has an independent probability of $\frac{1}{2}$ to be painted black.
In the optimal strategy (i.e. achieving least possible number of painting), the expectation of number of painting to paint all the squares black, is $T(n)$. Find the explicit formula of $T(n)$.

- \quad Grade 11

- Day 1

1 Let $a_{1}, a_{2}, \ldots, a_{17}$ be a permutation of $1,2, \ldots, 17$ such that $\left(a_{1}-a_{2}\right)\left(a_{2}-a_{3}\right) \ldots\left(a_{17}-a_{1}\right)=2^{n}$. Find the maximum possible value of positive integer n.

2 In a scalene triangle $\triangle A B C, A B<A C, P B$ and $P C$ are tangents of the circumcircle (O) of $\triangle A B C$. A point R lies on the arc $\widehat{A C}$ (not containing B), $P R$ intersects (O) again at Q. Suppose I is the incenter of $\triangle A B C, I D \perp B C$ at $D, Q D$ intersects (O) again at G. A line passing through I and perpendicular to $A I$ intersects $A G, A C$ at M, N, respectively. S is the midpoint of arc $\widehat{A R}$, and $S N$ intersects (O) again at T.
Prove that, if $A R \| B C$, then M, B, T are collinear.

3 Same as Grade 10 P3

4 Let $0 \leq a_{1} \leq a_{2} \leq \ldots \leq a_{n-1} \leq a_{n}$ such that $a_{1}+a_{2}+\ldots+a_{n}=1$. Prove for any non-negative numbers $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}$ the inequality

$$
\left(\sum_{i=1}^{n} a_{i} x_{i}-\prod_{i=1}^{n} x_{i}^{a_{i}}\right)\left(\sum_{i=1}^{n} a_{i} y_{i}-\prod_{i=1}^{n} y_{i}^{a_{i}}\right) \leq a_{n}^{2}\left(n \sqrt{\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}-\sum_{i=1}^{n} \sqrt{x_{i}} \sum_{i=1}^{n} \sqrt{y_{i}}\right)^{2} .
$$

- Day 2

5 Same as Grade 10 P5 (with part 2.)

6 Same as Grade 10 P6

7 Arrange all square-free positive integers in ascending order $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$. Prove that there are infinitely many positive integers n, such that $a_{n+1}-a_{n}=2020$.

8 Same as Grade 10 P8.

