Art of Problem Solving

AoPS Community

China Girls Math Olympiad 2020
www.artofproblemsolving.com/community/c1252245
by Henry_2001, WindyLi, mofumofu

Day 1 August 9, 2020

1 In the quadrilateral $A B C D, A B=A D, C B=C D, \angle A B C=90^{\circ} . E, F$ are on $A B, A D$ and P, Q are on $E F(P$ is between $E, Q)$, satisfy $\frac{A E}{E P}=\frac{A F}{F Q} . X, Y$ are on $C P, C Q$ that satisfy $B X \perp$ $C P, D Y \perp C Q$. Prove that X, P, Q, Y are concyclic.

2 Let n be an integer and $n \geq 2, x_{1}, x_{2}, \cdots, x_{n}$ are arbitrary real number, find the maximum value of

$$
2 \sum_{1 \leq i<j \leq n}\left\lfloor x_{i} x_{j}\right\rfloor-(n-1) \sum_{i=1}^{n}\left\lfloor x_{i}^{2}\right\rfloor
$$

3 There are 3 classes with n students in each class, and the heights of all $3 n$ students are pairwise distinct. Partition the students into groups of 3 such that in each group, there is one student from each class. In each group, call the tallest student the tall guy. Suppose that for any partition of the students, there are at least 10 tall guys in each class, prove that the minimum value of n is 40 .

4 Let p, q be primes, where $p>q$. Define $t=\operatorname{gcd}(p!-1, q!-1)$. Prove that $t \leq p^{\frac{p}{3}}$.
Day 2 August 10, 2020
5 Find all the real number sequences $\left\{b_{n}\right\}_{n \geq 1}$ and $\left\{c_{n}\right\}_{n \geq 1}$ that satisfy the following conditions:
(i) For any positive integer $n, b_{n} \leq c_{n}$;
(ii) For any positive integer n, b_{n+1} and c_{n+1} is the two roots of the equation $x^{2}+b_{n} x+c_{n}=0$.

6 Let p, q be integers and $p, q>1, g c d(p, 6 q)=1$. Prove that:

$$
\sum_{k=1}^{q-1}\left\lfloor\frac{p k}{q}\right\rfloor^{2} \equiv 2 p \sum_{k=1}^{q-1} k\left\lfloor\frac{p k}{q}\right\rfloor(\bmod q-1)
$$

$7 \quad$ Let O be the circumcenter of triangle $\triangle A B C$, where $\angle B A C=120^{\circ}$. The tangent at A to $(A B C)$ meets the tangents at B, C at $(A B C)$ at points P, Q respectively. Let H, I be the orthocenter and incenter of $\triangle O P Q$ respectively. Define M, N as the midpoints of arc BAC and $O I$ respectively, and let $M N$ meet $(A B C)$ again at D. Prove that $A D$ is perpendicular to $H I$.
$8 \quad$ Let n be a given positive integer. Let \mathbb{N}_{+}denote the set of all positive integers.
Determine the number of all finite lists $\left(a_{1}, a_{2}, \cdots, a_{m}\right)$ such that:
(1) $m \in \mathbb{N}_{+}$and $a_{1}, a_{2}, \cdots, a_{m} \in \mathbb{N}_{+}$and $a_{1}+a_{2}+\cdots+a_{m}=n$.
(2) The number of all pairs of integers (i, j) satisfying $1 \leq i<j \leq m$ and $a_{i}>a_{j}$ is even.

For example, when $n=4$, the number of all such lists $\left(a_{1}, a_{2}, \cdots, a_{m}\right)$ is 6 , and these lists are $(4),(1,3),(2,2),(1,1,2),(2,1,1),(1,1,1,1)$.

