AoPS Community

2015 Pan-African Mathematics Olympiad

www.artofproblemsolving.com/community/c125457
by DylanN

Problem 1 Prove that

$$
\sqrt{x-1}+\sqrt{2 x+9}+\sqrt{19-3 x}<9
$$

for all real x for which the left-hand side is well defined.
Problem 2 A convex hexagon $A B C D E F$ is such that

$$
A B=B C \quad C D=D E \quad E F=F A
$$

and

$$
\angle A B C=2 \angle A E C \quad \angle C D E=2 \angle C A E \quad \angle E F A=2 \angle A C E
$$

Show that $A D, C F$ and $E B$ are concurrent.
Problem 3 Let $a_{1}, a_{2}, \ldots, a_{11}$ be integers. Prove that there are numbers $b_{1}, b_{2}, \ldots, b_{11}$, each b_{i} equal $-1,0$ or 1 , but not all being 0 , such that the number

$$
N=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{11} b_{11}
$$

is divisible by 2015 .
Problem 4 For a positive integer n denote $d(n)$ its greatest odd divisor. Find the value of the sum

$$
d(1008)+d(1009)+\ldots+d(2015)
$$

Problem 5 There are seven cards in a hat, and on the card k there is a number $2^{k-1}, k=1,2, \ldots, 7$. Solarin picks the cards up at random from the hat, one card at a time, until the sum of the numbers on cards in his hand exceeds 124 . What is the most probable sum he can get?

Problem 6 Let $A B C D$ be a quadrilateral (with non-perpendicular diagonals).
The perpendicular from A to $B C$ meets $C D$ at K.
The perpendicular from A to $C D$ meets $B C$ at L.
The perpendicular from C to $A B$ meets $A D$ at M.
The perpendicular from C to $A D$ meets $A B$ at N.

1. Prove that $K L$ is parallel to $M N$.
2. Prove that $K L M N$ is a parallelogram if $A B C D$ is cyclic.
