Art of Problem Solving

AoPS Community

Thailand Mathematical Olympiad 2013
www.artofproblemsolving.com/community/c1258486
by parmenides51

- Day 1

1 Find the largest integer that divides $p^{4}-1$ for all primes $p>4$
2 Let $\triangle A B C$ be a triangle with $\angle A B C>\angle B C A \geq 30^{\circ}$. The angle bisectors of $\angle A B C$ and $\angle B C A$ intersect $C A$ and $A B$ at D and E respectively, and $B D$ and $C E$ intersect at P. Suppose that $P D=P E$ and the incircle of $\triangle A B C$ has unit radius. What is the maximum possible length of $B C$?

3 Each point on the plane is colored either red or blue. Show that there are three points of the same color that form a triangle with side lengths $1,2, \sqrt{3}$.

4 Determine all monic polynomials $p(x)$ having real coefficients and satisfying the following two conditions: $\bullet p(x)$ is nonconstant, and all of its roots are distinct reals • If a and b are roots of $p(x)$ then $a+b+a b$ is also a root of $p(x)$.
$5 \quad$ Find a five-digit positive integer n (in base 10) such that $n^{3}-1$ is divisible by 2556 and which minimizes the sum of digits of n.
$6 \quad$ Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $\left(x^{2}+y^{2}\right) f(x y)=f(x) f(y) f\left(x^{2}+y^{2}\right) \forall x, y \in \mathbb{R}$

- Day 2

7 Let P_{1}, \ldots, P_{2556} be distinct points in a regular hexagon $A B C D E F$ with unit side length. Suppose that no three points in the set $S=\left\{A, B, C, D, E, F, P_{1}, \ldots, P_{2556}\right\}$ are collinear. Show that there is a triangle whose vertices are in S and whose area is less than $\frac{1}{1700}$.

8 Let $p(x)=x^{2013}+a_{2012} x^{2012}+a_{2011} x^{2011}+\ldots+a_{1} x+a_{0}$ be a polynomial with real coefficients with roots $-b_{1006},-b_{1005}, \ldots,-b_{1}, 0, b_{1}, \ldots, b_{1005}, b_{1006}$, where $b_{1}, b_{2}, \ldots, b_{1006}$ are positive reals with product 1. Show that $a_{3} a_{2011} \leq 1012036$

9 Let $A B C D$ be a convex quadrilateral, and let M and N be midpoints of sides $A B$ and $C D$ respectively. Point P is chosen on $C D$ so that $M P \perp C D$, and point Q is chosen on $A B$ so that $N Q \perp A B$. Show that $A D \| B C$ if and only if $\frac{A B}{C D}=\frac{M P}{N Q}$.

10 Find all pairs of positive integers (x, y) such that $\frac{x y^{3}}{x+y}$ is the cube of a prime.

11 Let m, n be positive integers.
There are n piles of gold coins, so that pile i has $a_{i}>0$ coins in it $(i=1, \ldots, n)$. Consider the following game:
Step 1. Nadech picks sets $B_{1}, B_{2}, \ldots, B_{n}$, where each B_{i} is a nonempty subset of $\{1,2, \ldots, m\}$, and gives them to Yaya.

Step 2. Yaya picks a set S which is also a nonempty subset of $\{1,2, \ldots, m\}$.
Step 3. For each $i=1,2, \ldots, n$, Nadech wins the coins in pile i if $B_{i} \cap S$ has an even number of elements, and Yaya wins the coins in pile i if $B_{i} \cap S$ has an odd number of elements.

Show that, no matter how Nadech picks the sets $B_{1}, B_{2}, \ldots, B_{n}$, Yaya can always pick S so that she ends up with more gold coins than Nadech

12 Let ω be the incircle of $\triangle A B C, \omega$ is tangent to sides $B C$ and $A C$ at D and E respectively. The line perpendicular to $B C$ at D intersects ω again at P. Lines $A P$ and $B C$ intersect at M. Let N be a point on segment $A C$ so that $A E=C N$. Line $B N$ intersects ω at Q (closer to B) and intersect $A M$ at R. Show that the area of $\triangle A B R$ is equal to the area of $P Q M N$.

