

AoPS Community

2013 Thailand Mathematical Olympiad

Thailand Mathematical Olympiad 2013

www.artofproblemsolving.com/community/c1258486 by parmenides51

-	Day 1
1	Find the largest integer that divides $p^4 - 1$ for all primes $p > 4$
2	Let $\triangle ABC$ be a triangle with $\angle ABC > \angle BCA \ge 30^{\circ}$. The angle bisectors of $\angle ABC$ and $\angle BCA$ intersect CA and AB at D and E respectively, and BD and CE intersect at P . Suppose that $PD = PE$ and the incircle of $\triangle ABC$ has unit radius. What is the maximum possible length of BC ?
3	Each point on the plane is colored either red or blue. Show that there are three points of the same color that form a triangle with side lengths $1, 2, \sqrt{3}$.
4	Determine all monic polynomials $p(x)$ having real coefficients and satisfying the following two conditions: • $p(x)$ is nonconstant, and all of its roots are distinct reals • If a and b are roots of $p(x)$ then $a + b + ab$ is also a root of $p(x)$.
5	Find a five-digit positive integer n (in base 10) such that $n^3 - 1$ is divisible by 2556 and which minimizes the sum of digits of n .
6	Determine all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying $(x^2 + y^2)f(xy) = f(x)f(y)f(x^2 + y^2) \ \forall x, y \in \mathbb{R}$
-	Day 2
7	Let $P_1,, P_{2556}$ be distinct points in a regular hexagon $ABCDEF$ with unit side length. Suppose that no three points in the set $S = \{A, B, C, D, E, F, P_1,, P_{2556}\}$ are collinear. Show that there is a triangle whose vertices are in S and whose area is less than $\frac{1}{1700}$.
8	Let $p(x) = x^{2013} + a_{2012}x^{2012} + a_{2011}x^{2011} + + a_1x + a_0$ be a polynomial with real coefficients with roots $-b_{1006}, -b_{1005},, -b_1, 0, b_1,, b_{1005}, b_{1006}$, where $b_1, b_2,, b_{1006}$ are positive reals with product 1. Show that $a_3a_{2011} \le 1012036$
9	Let $ABCD$ be a convex quadrilateral, and let M and N be midpoints of sides AB and CD respectively. Point P is chosen on CD so that $MP \perp CD$, and point Q is chosen on AB so that $NQ \perp AB$. Show that $AD \parallel BC$ if and only if $\frac{AB}{CD} = \frac{MP}{NQ}$.
10	Find all pairs of positive integers (x, y) such that $\frac{xy^3}{x+y}$ is the cube of a prime.

AoPS Community

2013 Thailand Mathematical Olympiad

11 Let *m*, *n* be positive integers.

There are *n* piles of gold coins, so that pile *i* has $a_i > 0$ coins in it (i = 1, ..., n). Consider the following game:

Step 1. Nadech picks sets $B_1, B_2, ..., B_n$, where each B_i is a nonempty subset of $\{1, 2, ..., m\}$, and gives them to Yaya.

Step 2. Yaya picks a set S which is also a nonempty subset of $\{1, 2, ..., m\}$.

Step 3. For each i = 1, 2, ..., n, Nadech wins the coins in pile *i* if $B_i \cap S$ has an even number of elements, and Yaya wins the coins in pile *i* if $B_i \cap S$ has an odd number of elements.

Show that, no matter how Nadech picks the sets $B_1, B_2, ..., B_n$, Yaya can always pick S so that she ends up with more gold coins than Nadech

12 Let ω be the incircle of $\triangle ABC$, ω is tangent to sides BC and AC at D and E respectively. The line perpendicular to BC at D intersects ω again at P. Lines AP and BC intersect at M. Let N be a point on segment AC so that AE = CN. Line BN intersects ω at Q (closer to B) and intersect AM at R. Show that the area of $\triangle ABR$ is equal to the area of PQMN.

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱