Art of Problem Solving

AoPS Community

2005 Thailand Mathematical Olympiad

Thailand Mathematical Olympiad 2005 - then it was named as 2nd POSN Mathematical Olympiad www.artofproblemsolving.com/community/c1259179 by parmenides51

- Day 1

1 Let $A B C D$ be a trapezoid inscribed in a unit circle with diameter $A B$. If $D C=4 A D$, compute $A D$.

2 Let $\triangle A B C$ be an acute triangle, and let A^{\prime} and B^{\prime} be the feet of altitudes from A to $B C$ and from B to $C A$, respectively; the altitudes intersect at H. If $B H$ is equal to the circumradius of $\triangle A B C$, find $\frac{A^{\prime} B}{A B}$.

3 Triangle $\triangle A B C$ is isosceles with $A B=A C$ and $\angle A B C=2 \angle B A C$. Compute $\frac{A B}{B C}$.
4 Triangle $\triangle A B C$ is inscribed in the circle with diameter $B C$. If $A B=3, A C=4$, and O is the incenter of $\triangle A B C$, then find $B O \cdot O C$.
$5 \quad$ A die is thrown six times. How many ways are there for the six rolls to sum to 21 ?
$6 \quad$ Find the number of positive integer solutions to the equation $\left(x_{1}+x_{2}+x_{3}\right)^{2}\left(y_{1}+y_{2}\right)=2548$.
7 How many ways are there to express 2548 as a sum of at least two positive integers, where two sums that differ in order are considered different?

8 For each subset T of $S=\{1,2, \ldots, 7\}$, the result $r(T)$ of T is computed as follows: the elements of T are written, largest to smallest, and alternating signs $(+,-)$ starting with + are put in front of each number. The value of the resulting expression is $r(T)$. (For example, for $T=\{2,4,7\}$, we have $r(T)=+7-4+2=5$.) Compute the sum of $r(T)$ as T ranges over all subsets of S.
$9 \quad$ Compute $\operatorname{gcd}\left(\frac{135^{90}-45^{90}}{90^{2}}, 90^{2}\right)$
10 What is the remainder when $\sum_{k=1}^{2005} k^{2005 \cdot 2^{2005}}$ is divided by 2^{2005} ?
11 Find the smallest positive integer x such that 2^{254} divides $x^{2005}+1$.
12 Find the number of even integers n such that $0 \leq n \leq 100$ and $5 \mid n^{2} \cdot 2^{2 n^{2}}+1$.
13 Find all odd integers k for which there exists a positive integer m satisfying the equation $k+$ $(k+5)+(k+10)+\ldots+(k+5(m-1))=1372$.

14 A function $f: Z \rightarrow Z$ is given so that $f(m+n)=f(m)+f(n)+2 m n-2548$ for all positive integers m, n. Given that $f(2548)=-2548$, find the value of $f(2)$.

15 A function $f: R \rightarrow R$ satisfy the functional equation $f(x+2 y)+2 f(y-2 x)=3 x-4 y+6$ for all reals x, y. Compute $f(2548)$.

16 Compute the sum of roots of $(2-x)^{2005}+x^{2005}=0$.
17 For $a, b \geq 0$ we define $a * b=\frac{a+b+1}{a b+12}$. Compute $0 *(1 *(2 *(\ldots(2003 *(2004 * 2005)) \ldots)))$.
18 Compute the sum

$$
\sum_{k=0}^{1273} \frac{1}{1+\tan ^{2548}\left(\frac{k \pi}{2548}\right)}
$$

19 Let $P(x)$ be a monic polynomial of degree 4 such that for $k=1,2,3$, the remainder when $P(x)$ is divided by $x-k$ is equal to k. Find the value of $P(4)+P(0)$.

20 Let $a, b, c, d>0$ satisfy $36 a+4 b+4 c+3 d=25$. What is the maximum possible value of $a b^{1 / 2} c^{1 / 3} d^{1 / 4}$?

21 Compute the minimum value of $\cos (a-b)+\cos (b-c)+\cos (c-a)$ as a, b, c ranges over the real numbers.

- Day 2 (proof based)

1 A point A is chosen outside a circle with diameter $B C$ so that $\triangle A B C$ is acute. Segments $A B$ and $A C$ intersect the circle at D and E, respectively, and $C D$ intersects $B E$ at F. Line $A F$ intersects the circle again at G and intersects $B C$ at H. Prove that $A H \cdot F H=G H^{2}$.

2 Let S be a set of three distinct integers. Show that there are $a, b \in S$ such that $a \neq b$ and $10 \mid a^{3} b-a b^{3}$.

3 Does there exist a function $f: Z^{+} \rightarrow Z^{+}$such that $f(f(n))=2 n$ for all positive integers n ? Justify your answer, and if the answer is yes, give an explicit construction.

4 Let O_{1} be the center of a semicircle ω_{1} with diameter $A B$ and let O_{2} be the center of a circle ω_{2} inscribed in ω_{1} and which is tangent to $A B$ at O_{1}. Let O_{3} be a point on $A B$ that is the center of a semicircle ω_{3} which is tangent to both ω_{1} and ω_{2}. Let P be the intersection of the line through O_{3} perpendicular to $A B$ and the line through O_{2} parallel to $A B$. Show that P is the center of a circle Γ tangent to all of ω_{1}, ω_{2} and ω_{3}.

6 Let a, b, c be distinct real numbers. Prove that

$$
\left(\frac{2 a-b}{a-b}\right)^{2}+\left(\frac{2 b-c}{b-c}\right)^{2}+\left(\frac{2 c-a}{c-a}\right)^{2} \geq 5
$$

