

AoPS Community

2005 Thailand Mathematical Olympiad

Thailand Mathematical Olympiad 2005 - then it was named as 2nd POSN Mathematical Olympiad www.artofproblemsolving.com/community/c1259179 by parmenides51

-	Day 1
1	Let $ABCD$ be a trapezoid inscribed in a unit circle with diameter AB . If $DC = 4AD$, compute AD .
2	Let $\triangle ABC$ be an acute triangle, and let A' and B' be the feet of altitudes from A to BC and from B to CA , respectively; the altitudes intersect at H . If BH is equal to the circumradius of $\triangle ABC$, find $\frac{A'B}{AB}$.
3	Triangle $\triangle ABC$ is isosceles with $AB = AC$ and $\angle ABC = 2\angle BAC$. Compute $\frac{AB}{BC}$.
4	Triangle $\triangle ABC$ is inscribed in the circle with diameter <i>BC</i> . If $AB = 3$, $AC = 4$, and <i>O</i> is the incenter of $\triangle ABC$, then find $BO \cdot OC$.
5	A die is thrown six times. How many ways are there for the six rolls to sum to 21 ?
6	Find the number of positive integer solutions to the equation $(x_1 + x_2 + x_3)^2(y_1 + y_2) = 2548$.
7	How many ways are there to express 2548 as a sum of at least two positive integers, where two sums that differ in order are considered different?
8	For each subset T of $S = \{1, 2,, 7\}$, the result $r(T)$ of T is computed as follows: the elements of T are written, largest to smallest, and alternating signs $(+, -)$ starting with $+$ are put in front of each number. The value of the resulting expression is $r(T)$. (For example, for $T = \{2, 4, 7\}$, we have $r(T) = +7 - 4 + 2 = 5$.) Compute the sum of $r(T)$ as T ranges over all subsets of S .
9	Compute gcd $\left(\frac{135^{90}-45^{90}}{90^2}, 90^2\right)$
10	What is the remainder when $\sum_{k=1}^{2005} k^{2005 \cdot 2^{2005}}$ is divided by 2^{2005} ?
11	Find the smallest positive integer x such that 2^{254} divides $x^{2005} + 1$.
12	Find the number of even integers n such that $0 \le n \le 100$ and $5 n^2 \cdot 2^{2n^2} + 1$.
13	Find all odd integers k for which there exists a positive integer m satisfying the equation $k + (k+5) + (k+10) + + (k+5(m-1)) = 1372$.

AoPS Community

2005 Thailand Mathematical Olympiad

- 14 A function $f: Z \to Z$ is given so that f(m+n) = f(m) + f(n) + 2mn 2548 for all positive integers m, n. Given that f(2548) = -2548, find the value of f(2).
- **15** A function $f : R \to R$ satisfy the functional equation f(x + 2y) + 2f(y 2x) = 3x 4y + 6 for all reals x, y. Compute f(2548).
- **16** Compute the sum of roots of $(2 x)^{2005} + x^{2005} = 0$.
- 17 For $a, b \ge 0$ we define $a * b = \frac{a+b+1}{ab+12}$. Compute 0 * (1 * (2 * (...(2003 * (2004 * 2005))...)))).
- 18 Compute the sum

$$\sum_{k=0}^{1273} \frac{1}{1 + \tan^{2548}\left(\frac{k\pi}{2548}\right)}$$

- **19** Let P(x) be a monic polynomial of degree 4 such that for k = 1, 2, 3, the remainder when P(x) is divided by x k is equal to k. Find the value of P(4) + P(0).
- **20** Let a, b, c, d > 0 satisfy 36a + 4b + 4c + 3d = 25. What is the maximum possible value of $ab^{1/2}c^{1/3}d^{1/4}$?
- **21** Compute the minimum value of cos(a b) + cos(b c) + cos(c a) as a, b, c ranges over the real numbers.
- Day 2 (proof based)
- **1** A point *A* is chosen outside a circle with diameter *BC* so that $\triangle ABC$ is acute. Segments *AB* and *AC* intersect the circle at *D* and *E*, respectively, and *CD* intersects *BE* at *F*. Line *AF* intersects the circle again at *G* and intersects *BC* at *H*. Prove that $AH \cdot FH = GH^2$.
- **2** Let *S* be a set of three distinct integers. Show that there are $a, b \in S$ such that $a \neq b$ and $10|a^3b ab^3$.
- **3** Does there exist a function $f : Z^+ \to Z^+$ such that f(f(n)) = 2n for all positive integers *n*? Justify your answer, and if the answer is yes, give an explicit construction.
- 4 Let O_1 be the center of a semicircle ω_1 with diameter AB and let O_2 be the center of a circle ω_2 inscribed in ω_1 and which is tangent to AB at O_1 . Let O_3 be a point on AB that is the center of a semicircle ω_3 which is tangent to both ω_1 and ω_2 . Let P be the intersection of the line through O_3 perpendicular to AB and the line through O_2 parallel to AB. Show that P is the center of a circle Γ tangent to all of ω_1, ω_2 and ω_3 .

AoPS Community

2005 Thailand Mathematical Olympiad

6 Let *a*, *b*, *c* be distinct real numbers. Prove that

$$\left(\frac{2a-b}{a-b}\right)^2 + \left(\frac{2b-c}{b-c}\right)^2 + \left(\frac{2c-a}{c-a}\right)^2 \ge 5$$

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.