Art of Problem Solving

AoPS Community

2007 Thailand Mathematical Olympiad

Thailand Mathematical Olympiad 2007 - then it was named as 4th POSN Mathematical Olympiad www.artofproblemsolving.com/community/c1259196 by parmenides51

- Day 1

1 In a circle $\odot O$, radius $O A$ is perpendicular to radius $O B$. Chord $A C$ intersects $O B$ at E so that the length of arc $A C$ is one-third the circumference of $\odot O$. Point D is chosen on $O B$ so that $C D \perp A B$. Suppose that segment $A C$ is 2 units longer than segment $O D$. What is the length of segment $A C$?

2 Let $A B C D$ be a cyclic quadrilateral so that arcs $A B$ and $B C$ are equal. Given that $A D=$ $6, B D=4$ and $C D=1$, compute $A B$.

3 A triangle $\triangle A B C$ has $\angle B=90^{\circ}$. A circle is tangent to $A B$ at B and also tangent to $A C$. Another circle is tangent to the first circle as well as the two sides $A B$ and $A C$. Suppose that $A B=\sqrt{3}$ and $B C=3$. What is the radius of the second circle?

4 A triangle $\triangle A B C$ has $A C=16$ and $B C=12 . E$ and F are points on $A C$ and $B C$, respectively, so that $C E=3 C F$. Let M be the midpoint of $A B$, and let lines $E F$ and $C M$ intersect at G. Compute the ratio $E G$: $G F$.
$5 \quad$ A triangle $\triangle A B C$ has $\angle A=90^{\circ}$, and a point D is chosen on $A C$. Point F is the foot of altitude from A to $B C$. Suppose that $B D=D C=C F=2$. Compute $A C$.
$6 \quad$ Let M be the midpoint of a given segment $B C$. Point A is chosen to maximize $\angle A B C$ while subject to the condition that $\angle M A C=20^{\circ}$. What is the ratio $B C / B A$?

7 Let a, b, c be complex numbers such that $a+b+c=1, a^{2}+b^{2}+c^{2}=2$ and $a^{3}+b^{3}+c^{3}=3$. Find the value of $a^{4}+b^{4}+c^{4}$.

8 Let $x_{1}, x_{2}, \ldots, x_{84}$ be the roots of the equation $x^{84}+7 x-6=0$. Compute $\sum_{k=1}^{84} \frac{x_{k}}{x_{k}-1}$.
9 Let $f: R \rightarrow R$ be a function satisfying the equation $f\left(x^{2}+x+3\right)+2 f\left(x^{2}-3 x+5\right)=6 x^{2}-10 x+17$ for all real numbers x. What is the value of $f(85)$?

10 Find the smallest positive integer n such that the equation $\sqrt{3} z^{n+1}-z^{n}-1=0$ has a root on the unit circle.

11 Compute the number of functions $f:\{1,2, \ldots, 2550\} \rightarrow\{61,80,84\}$ such that $\sum_{k=1}^{2550} f(k)$ is divisible by 3 .

12 An alien with four feet wants to wear four identical socks and four identical shoes, where on each foot a sock must be put on before a shoe. How many ways are there for the alien to wear socks and shoes?

13 Let $S=\{1,2, \ldots, 8\}$. How many ways are there to select two disjoint subsets of S ?
14 The sum

$$
\sum_{k=84}^{8000}\binom{k}{84}\binom{8084-k}{84}
$$

can be written as a binomial coefficient $\binom{a}{b}$ for integers a, b. Find a possible pair (a, b)
15 Compute the remainder when $222!^{111}+111^{222!}+111!^{222}+222^{111!}$ is divided by 2007.
16 What is the smallest positive integer with 24 positive divisors?
17 Compute the product of positive integers n such that $n^{2}+59 n+881$ is a perfect square.
18 Let p_{k} be the k-th prime number. Find the remainder when $\sum_{k=2}^{2550} p_{k}^{p_{k}^{4}-1}$ is divided by 2550 .

- Day 2 (proof based)

1 Find all functions $f: R \rightarrow R$ such that the inequality

$$
\sum_{i=1}^{2549} f\left(x_{i}+x_{i+1}\right)+f\left(\sum_{i=1}^{2550} x_{y}\right) \leq \sum_{i=1}^{2550} f\left(2 x_{i}\right)
$$

for all reals $x_{1}, x_{2}, \ldots, x_{2550}$.
2 In a dance party there are n girls and n boys, and some m songs are played. Each song is danced to by at least one pair of a boy and a girl, who both receive a malai each. Prove that for all positive integers $k \leq n$, it is possible to select k boys and $n-k$ girls so that the n selected people received at least m malai in total.

3 Two circles intersect at X and Y. The line through the centers of the circles intersect the first circle at A and C, and intersect the second circle at B and D so that A, B, C, D lie in this order. The common chord $X Y$ cuts $B C$ at P, and a point O is arbitrarily chosen on segment $X P$. Lines $C O$ and $B O$ are extended to intersect the first and second circles at M and N, respectively. If lines $A M$ and $D N$ intersect at Z, prove that X, Y and Z lie on the same line.

4 Find all primes p such that $\frac{2^{p-1}-1}{p}$ is a perfect square.

AoPS Community

5 The freshman class of a school consists of 229 boys and 271 girls, and is divided into 10 rooms of 50 students each, the students in each room are numbered from 1 to 50 . The physical education teacher wants to select a relay running team consisting of 1 boy and 3 girls or 1 girl and 3 boys, so that the four students must be two pairs of students with the same number from two rooms. Show that the number of possible teams is odd.

6 A triangle has perimeter $2 s$, inradius r, and incenter I. If s_{a}, s_{b} and s_{c} are the distances from I to the three vertices, then show that

$$
\frac{3}{4}+\frac{r}{s_{a}}+\frac{r}{s_{b}}+\frac{r}{s_{c}} \leq \frac{s^{2}}{12 r^{2}}
$$

