

AoPS Community

divisible by 3.

2007 Thailand Mathematical Olympiad

Thailand Mathematical Olympiad 2007 - then it was named as 4th POSN Mathematical Olympiad www.artofproblemsolving.com/community/c1259196 by parmenides51

-	Day 1
1	In a circle $\odot O$, radius OA is perpendicular to radius OB . Chord AC intersects OB at E so that the length of arc AC is one-third the circumference of $\odot O$. Point D is chosen on OB so that $CD \perp AB$. Suppose that segment AC is 2 units longer than segment OD . What is the length of segment AC ?
2	Let $ABCD$ be a cyclic quadrilateral so that arcs AB and BC are equal. Given that $AD=6, BD=4$ and $CD=1$, compute AB .
3	A triangle \triangle ABC has $\angle B=90^o$. A circle is tangent to AB at B and also tangent to AC . Another circle is tangent to the first circle as well as the two sides AB and AC . Suppose that $AB=\sqrt{3}$ and $BC=3$. What is the radius of the second circle?
4	A triangle \triangle ABC has $AC=16$ and $BC=12$. E and F are points on AC and BC , respectively, so that $CE=3CF$. Let M be the midpoint of AB , and let lines EF and CM intersect at G . Compute the ratio $EG:GF$.
5	A triangle \triangle ABC has $\angle A=90^o$, and a point D is chosen on AC . Point F is the foot of altitude from A to BC . Suppose that $BD=DC=CF=2$. Compute AC .
6	Let M be the midpoint of a given segment BC . Point A is chosen to maximize $\angle ABC$ while subject to the condition that $\angle MAC = 20^o$. What is the ratio BC/BA ?
7	Let a,b,c be complex numbers such that $a+b+c=1$, $a^2+b^2+c^2=2$ and $a^3+b^3+c^3=3$. Find the value of $a^4+b^4+c^4$.
8	Let $x_1, x_2,, x_{84}$ be the roots of the equation $x^{84} + 7x - 6 = 0$. Compute $\sum_{k=1}^{84} \frac{x_k}{x_k - 1}$.
9	Let $f:R\to R$ be a function satisfying the equation $f(x^2+x+3)+2f(x^2-3x+5)=6x^2-10x+17$ for all real numbers x . What is the value of $f(85)$?
10	Find the smallest positive integer n such that the equation $\sqrt{3}z^{n+1}-z^n-1=0$ has a root on the unit circle.
11	Compute the number of functions $f:\{1,2,,2550\} \rightarrow \{61,80,84\}$ such that $\sum_{k=1}^{2550} f(k)$ is

AoPS Community

- An alien with four feet wants to wear four identical socks and four identical shoes, where on each foot a sock must be put on before a shoe. How many ways are there for the alien to wear socks and shoes?
- Let $S = \{1, 2, ..., 8\}$. How many ways are there to select two disjoint subsets of S?
- 14 The sum

$$\sum_{k=84}^{8000} \binom{k}{84} \binom{8084-k}{84}$$

can be written as a binomial coefficient $\binom{a}{b}$ for integers a, b. Find a possible pair (a, b)

- 15 Compute the remainder when $222!^{111} + 111^{222!} + 111!^{222} + 222^{111!}$ is divided by 2007.
- 16 What is the smallest positive integer with 24 positive divisors?
- Compute the product of positive integers n such that $n^2 + 59n + 881$ is a perfect square.
- Let p_k be the k-th prime number. Find the remainder when $\sum_{k=2}^{2550} p_k^{p_k^4-1}$ is divided by 2550.
- Day 2 (proof based)
- 1 Find all functions $f: R \to R$ such that the inequality

$$\sum_{i=1}^{2549} f(x_i + x_{i+1}) + f(\sum_{i=1}^{2550} x_y) \le \sum_{i=1}^{2550} f(2x_i)$$

for all reals $x_1, x_2, ..., x_{2550}$.

- In a dance party there are n girls and n boys, and some m songs are played. Each song is danced to by at least one pair of a boy and a girl, who both receive a malai each. Prove that for all positive integers $k \le n$, it is possible to select k boys and n-k girls so that the n selected people received at least m malai in total.
- Two circles intersect at X and Y. The line through the centers of the circles intersect the first circle at A and C, and intersect the second circle at B and D so that A,B,C,D lie in this order. The common chord XY cuts BC at P, and a point O is arbitrarily chosen on segment XP. Lines CO and BO are extended to intersect the first and second circles at M and N, respectively. If lines AM and DN intersect at Z, prove that X,Y and Z lie on the same line.
- **4** Find all primes p such that $\frac{2^{p-1}-1}{p}$ is a perfect square.

- The freshman class of a school consists of 229 boys and 271 girls, and is divided into 10 rooms of 50 students each, the students in each room are numbered from 1 to 50. The physical education teacher wants to select a relay running team consisting of 1 boy and 3 girls or 1 girl and 3 boys, so that the four students must be two pairs of students with the same number from two rooms. Show that the number of possible teams is odd.
- A triangle has perimeter 2s, inradius r, and incenter I. If s_a, s_b and s_c are the distances from I to the three vertices, then show that

$$\frac{3}{4} + \frac{r}{s_a} + \frac{r}{s_b} + \frac{r}{s_c} \le \frac{s^2}{12r^2}$$