

AoPS Community

2008 Thailand Mathematical Olympiad

Thailand Mathematical Olympiad 2008 - then it was named as 5st POSN Mathematical Olympiad www.artofproblemsolving.com/community/c1259245 by parmenides51	
-	Day 1
1	Let $\triangle ABC$ be a triangle with $\angle BAC = 90^{\circ}$ and $\angle ABC = 60^{\circ}$. Point <i>E</i> is chosen on side <i>BC</i> so that $BE : EC = 3 : 2$. Compute $\cos \angle CAE$.
2	Let AD be the common chord of two equal-sized circles O_1 and O_2 . Let B and C be points on O_1 and O_2 , respectively, so that D lies on the segment BC . Assume that $AB = 15, AD = 13$ and $BC = 18$, what is the ratio between the inradii of $\triangle ABD$ and $\triangle ACD$?
3	Find all positive real solutions to the equation $x + \lfloor \frac{x}{3} \rfloor = \lfloor \frac{2x}{3} \rfloor + \lfloor \frac{3x}{5} \rfloor$
4	Prove that $\sqrt{a^2+b^2-\sqrt{2}ab}+\sqrt{b^2+c^2-\sqrt{2}bc}\geq \sqrt{a^2+c^2}$
	for all real numbers $a, b, c > 0$
5	Let $P(x)$ be a polynomial of degree 2008 with the following property: all roots of P are real, and for all real a , if $P(a) = 0$ then $P(a + 1) = 1$. Prove that P must have a repeated root.
6	Let $f : R \to R$ be a function satisfying the inequality $ f(x + y) - f(x) - f(y) < 1$ for all reals x, y . Show that $\left f\left(\frac{x}{2008}\right) - \frac{f(x)}{2008} \right < 1$ for all real numbers x .
7	Two positive integers m, n satisfy the two equations $m^2 + n^2 = 3789$ and $gcd(m, n) + lcm(m, n) = 633$. Compute $m + n$.
8	Prove that $2551 \cdot 543^n - 2008 \cdot 7^n$ is never a perfect square, where n varies over the set of positive integers
9	Find the number of pairs of sets (A, B) satisfying $A \subseteq B \subseteq \{1, 2,, 10\}$
10	On the sides of triangle $\triangle ABC$, 17 points are added, so that there are 20 points in total (including the vertices of $\triangle ABC$.) What is the maximum possible number of (nondegenerate) triangles that can be formed by these points.
_	Day 2 (proof based)

AoPS Community

2008 Thailand Mathematical Olympiad

- 1 Let *P* be a point outside a circle ω . The tangents from *P* to ω are drawn touching ω at points *A* and *B*. Let *M* and *N* be the midpoints of *AP* and *AB*, respectively. Line *MN* is extended to cut ω at *C* so that *N* lies between *M* and *C*. Line *PC* intersects ω again at *D*, and lines *ND* and *PB* intersect at *O*. Prove that *MNOP* is a rhombus.
- Find all positive integers N with the following properties:
 (i) N has at least two distinct prime factors, and
 (ii) if d₁ < d₂ < d₃ < d₄ are the four smallest divisors of N then N = d₁² + d₂² + d₃² + d₄²
- **3** For each positive integer *n*, define $a_n = n(n+1)$. Prove that

 $n^{1/a_1} + n^{1/a_3} + n^{1/a_5} + \ldots + n^{1/a_{2n-1}} \ge n^{a_{3n+2}/a_{3n+1}}$

4 Let *n* be a positive integer. Show that

$$\binom{2n+1}{1} - \binom{2n+1}{3}2008 + \binom{2n+1}{5}2008^2 - \dots + (-1)^{2n+1}\binom{2n+1}{2n+1}2008^n$$

is not divisible by 19.

- 5 Students in a class consisting of *m* boys and *n* girls line up. Over all possible ways of lining up, compute the average number of pairs of two boys or two girls who are next to each other.
- 6 Let $f : R^+ \to R^+$ satisfy $f(xy)^2 = f(x^2)f(y^2)$ for all positive reals x, y with $x^2y^3 > 2008$. Prove that $f(xy)^2 = f(x^2)f(y^2)$ for all positive reals x, y.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.