Art of Problem Solving

AoPS Community

2008 Thailand Mathematical Olympiad

Thailand Mathematical Olympiad 2008 - then it was named as 5st POSN Mathematical Olympiad

 www.artofproblemsolving.com/community/c1259245by parmenides 51

- Day 1

1 Let $\triangle A B C$ be a triangle with $\angle B A C=90^{\circ}$ and $\angle A B C=60^{\circ}$. Point E is chosen on side $B C$ so that $B E: E C=3: 2$. Compute $\cos \angle C A E$.

2 Let $A D$ be the common chord of two equal-sized circles O_{1} and O_{2}. Let B and C be points on O_{1} and O_{2}, respectively, so that D lies on the segment $B C$. Assume that $A B=15, A D=13$ and $B C=18$, what is the ratio between the inradii of $\triangle A B D$ and $\triangle A C D$?

3 Find all positive real solutions to the equation $x+\left\lfloor\frac{x}{3}\right\rfloor=\left\lfloor\frac{2 x}{3}\right\rfloor+\left\lfloor\frac{3 x}{5}\right\rfloor$
4 Prove that

$$
\sqrt{a^{2}+b^{2}-\sqrt{2} a b}+\sqrt{b^{2}+c^{2}-\sqrt{2} b c} \geq \sqrt{a^{2}+c^{2}}
$$

for all real numbers $a, b, c>0$
5 Let $P(x)$ be a polynomial of degree 2008 with the following property: all roots of P are real, and for all real a, if $P(a)=0$ then $P(a+1)=1$. Prove that P must have a repeated root.
$6 \quad$ Let $f: R \rightarrow R$ be a function satisfying the inequality $|f(x+y)-f(x)-f(y)|<1$ for all reals x, y.
Show that $\left|f\left(\frac{x}{2008}\right)-\frac{f(x)}{2008}\right|<1$ for all real numbers x.
7 Two positive integers m, n satisfy the two equations $m^{2}+n^{2}=3789$ and $\operatorname{gcd}(m, n)+l c m(m, n)=$ 633. Compute $m+n$.

8 Prove that $2551 \cdot 543^{n}-2008 \cdot 7^{n}$ is never a perfect square, where n varies over the set of positive integers

9 Find the number of pairs of sets (A, B) satisfying $A \subseteq B \subseteq\{1,2, \ldots, 10\}$
10 On the sides of triangle $\triangle A B C, 17$ points are added, so that there are 20 points in total (including the vertices of $\triangle A B C$.) What is the maximum possible number of (nondegenerate) triangles that can be formed by these points.

- Day 2 (proof based)
$1 \quad$ Let P be a point outside a circle ω. The tangents from P to ω are drawn touching ω at points A and B. Let M and N be the midpoints of $A P$ and $A B$, respectively. Line $M N$ is extended to cut ω at C so that N lies between M and C. Line $P C$ intersects ω again at D, and lines $N D$ and $P B$ intersect at O. Prove that $M N O P$ is a rhombus.

2 Find all positive integers N with the following properties:
(i) N has at least two distinct prime factors, and
(ii) if $d_{1}<d_{2}<d_{3}<d_{4}$ are the four smallest divisors of N then $N=d_{1}^{2}+d_{2}^{2}+d_{3}^{2}+d_{4}^{2}$

3 For each positive integer n, define $a_{n}=n(n+1)$. Prove that

$$
n^{1 / a_{1}}+n^{1 / a_{3}}+n^{1 / a_{5}}+\ldots+n^{1 / a_{2 n-1}} \geq n^{a_{3 n+2} / a_{3 n+1}}
$$

4 Let n be a positive integer. Show that

$$
\binom{2 n+1}{1}-\binom{2 n+1}{3} 2008+\binom{2 n+1}{5} 2008^{2}-\ldots+(-1)^{2 n+1}\binom{2 n+1}{2 n+1} 2008^{n}
$$

is not divisible by 19 .
5 Students in a class consisting of m boys and n girls line up. Over all possible ways of lining up, compute the average number of pairs of two boys or two girls who are next to each other.

6 Let $f: R^{+} \rightarrow R^{+}$satisfy $f(x y)^{2}=f\left(x^{2}\right) f\left(y^{2}\right)$ for all positive reals x, y with $x^{2} y^{3}>2008$. Prove that $f(x y)^{2}=f\left(x^{2}\right) f\left(y^{2}\right)$ for all positive reals x, y.

