Art of Problem Solving

AoPS Community

Thailand Mathematical Olympiad 2009
www.artofproblemsolving.com/community/c1259250 by parmenides51

- Day 1
$1 \quad$ Let $S \subset Z^{+}$be a set of positive integers with the following property: for any $a, b \in S$, if $a \neq b$ then $a+b$ is a perfect square. Given that $2009 \in S$ and $2087 \in S$, what is the maximum number of elements in S ?

2 Let k and n be positive integers with $k<n$. Find the number of subsets of $\{1,2, \ldots, n\}$ such that the difference between the largest and smallest elements in the subset is k.

3 Teeradet is a student in a class with 19 people. He and his classmates form clubs, so that each club must have at least one student, and each student can be in more than one club. Suppose that any two clubs differ by at least one student, and all clubs Teeradet is in have an odd number of students. What is the maximum possible number of clubs?

4 In triangle $\triangle A B C, D$ is the midpoint of $B C$. Points E and F are chosen on side $A C$ so that $A F=F E=E C$. Let $A D$ intersect $B E$ and $B F$ and G and H, respectively. Find the ratio of the areas of $\triangle B G H$ and $\triangle A B C$.

5 Determine all functions $f: R \rightarrow R$ satisfying:

$$
f(x y+2 x+2 y-1)=f(x) f(y)+f(y)+x-2
$$

for all real numbers x, y.
6 Let $\triangle A B C$ be a triangle with $A B>A C$, its incircle is tangent to $B C$ at D. Let $D E$ be a diameter of the incircle, and let F be the intersection between line $A E$ and side $B C$. Find the ratio between the areas of $\triangle D E F$ and $\triangle A B C$ in terms of the three side lengths of $\triangle A B C$.

7 Let a, b, c be real numbers, and define $S_{n}=a^{n}+b^{n}+c^{n}$ for positive integers n. Suppose that S_{1}, S_{2}, S_{3} are integers satisfying $6 \mid 5 S_{1}-3 S_{2}-2 S_{3}$. Show that S_{n} is an integer for all positive integers n.

8 Let a, b, c be side lengths of a triangle, and define $s=\frac{a+b+c}{2}$. Prove that

$$
\frac{2 a(2 a-s)}{b+c}+\frac{2 b(2 b-s)}{c+a}+\frac{2 c(2 c-s)}{a+b} \geq s .
$$

AoPS Community

2009 Thailand Mathematical Olympiad

9 In triangle $\triangle A B C, D$ and E are midpoints of the sides $B C$ and $A C$, respectively. Lines $A D$ and $B E$ are drawn intersecting at P. It turns out that $\angle C A D=15^{\circ}$ and $\angle A P B=60^{\circ}$. What is the value of $A B / B C$?

10 Let $p>5$ be a prime. Suppose that

$$
\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\ldots+\frac{1}{(p-1)^{2}}=\frac{a}{b}
$$

where a / b is a fraction in lowest terms. Show that $p \mid a$.

- Day 2

1 Let a and b be integers and p a prime. For each positive integer k, define $A_{k}=\left\{n \in Z^{+} \mid p^{k}\right.$ divides $\left.a^{n}-b^{n}\right\}$. Show that if A_{1} is nonempty then A_{k} is nonempty for all positive integers k

2 Is there an injective function $f: Z^{+} \rightarrow Q$ satisfying the equation $f(x y)=f(x)+f(y)$ for all positive integers x and y ?

3 Let $A B C D$ be a convex quadrilateral with the property that $M A \cdot M C+M A \cdot C D=M B \cdot M D$, where M is the intersection of the diagonals $A C$ and $B D$. The angle bisector of $\angle A C D$ is drawn intersecting ray $\overrightarrow{B A}$ at K. Prove that $B C=D K$ if and only if $A B \| C D$.

4 Let k be a positive integer. Show that there are infinitely many positive integer solutions (m, n) to $(m-n)^{2}=k m n+m+n$.

5 A class contains 80 boys and 80 girls. On each weekday (Monday to Friday) of the week before final exams, the teacher has 16 books for the students to borrow, where a book can only be borrowed for one day at a time, and each student can only borrow once during the entire week. Show that there are two days and two books such that one of the following two statements is true:
(i) Both books were not borrowed on both days
(ii) Both books were borrowed on both days, and the four students who borrowed the books on these days are either all boys or all girls.

6 Find all polynomials of the form $P(x)=(-1)^{n} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}$ with the following two properties:
(i) $\left\{a_{1}, a_{2}, \ldots, a_{n}-1, a_{n}\right\}=\{0,1\}$, and
(ii) all roots of $P(x)$ are distinct real numbers

