AoPS Community

www.artofproblemsolving.com/community/c126358
by randomusername

- Individual Competition

1 Find all surjective functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for all positive integers a and b, exactly one of the following equations is true:

$$
\begin{aligned}
f(a) & =f(b),<b r /> \\
f(a+b) & =\min \{f(a), f(b)\} .
\end{aligned}
$$

Remarks: \mathbb{N} denotes the set of all positive integers. A function $f: X \rightarrow Y$ is said to be surjective if for every $y \in Y$ there exists $x \in X$ such that $f(x)=y$.

2 Let $n \geq 3$ be an integer. An inner diagonal of a [i]simple n-gon[/i] is a diagonal that is contained in the n-gon. Denote by $D(P)$ the number of all inner diagonals of a simple n-gon P and by $D(n)$ the least possible value of $D(Q)$, where Q is a simple n-gon. Prove that no two inner diagonals of P intersect (except possibly at a common endpoint) if and only if $D(P)=D(n)$.
Remark: A simple n-gon is a non-self-intersecting polygon with n vertices. A polygon is not necessarily convex.

3 Let $A B C D$ be a cyclic quadrilateral. Let E be the intersection of lines parallel to $A C$ and $B D$ passing through points B and A, respectively. The lines $E C$ and $E D$ intersect the circumcircle of $A E B$ again at F and G, respectively. Prove that points C, D, F, and G lie on a circle.

4 Find all pairs of positive integers (m, n) for which there exist relatively prime integers a and b greater than 1 such that

$$
\frac{a^{m}+b^{m}}{a^{n}+b^{n}}
$$

is an integer.

- Team Competition

1 Prove that for all positive real numbers a, b, c such that $a b c=1$ the following inequality holds:

$$
\frac{a}{2 b+c^{2}}+\frac{b}{2 c+a^{2}}+\frac{c}{2 a+b^{2}} \leq \frac{a^{2}+b^{2}+c^{2}}{3} .
$$

AoPS Community

2 Determine all functions $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R} \backslash\{0\}$ such that

$$
f\left(x^{2} y f(x)\right)+f(1)=x^{2} f(x)+f(y)
$$

holds for all nonzero real numbers x and y.
3 There are n students standing in line positions 1 to n. While the teacher looks away, some students change their positions. When the teacher looks back, they are standing in line again. If a student who was initially in position i is now in position j, we say the student moved for $|i-j|$ steps. Determine the maximal sum of steps of all students that they can achieve.
$4 \quad$ Let N be a positive integer. In each of the N^{2} unit squares of an $N \times N$ board, one of the two diagonals is drawn. The drawn diagonals divide the $N \times N$ board into K regions. For each N, determine the smallest and the largest possible values of K.

Example with $N=3, K=7$
$5 \quad$ Let $A B C$ be an acute triangle with $A B>A C$. Prove that there exists a point D with the following property: whenever two distinct points X and Y lie in the interior of $A B C$ such that the points B, C, X, and Y lie on a circle and

$$
\angle A X B-\angle A C B=\angle C Y A-\angle C B A
$$

holds, the line $X Y$ passes through D.
$6 \quad$ Let I be the incentre of triangle $A B C$ with $A B>A C$ and let the line $A I$ intersect the side $B C$ at D. Suppose that point P lies on the segment $B C$ and satisfies $P I=P D$. Further, let J be the point obtained by reflecting I over the perpendicular bisector of $B C$, and let Q be the other intersection of the circumcircles of the triangles $A B C$ and $A P D$. Prove that $\angle B A Q=\angle C A J$.

7 Find all pairs of positive integers (a, b) such that

$$
a!+b!=a^{b}+b^{a} .
$$

8 Let $n \geq 2$ be an integer. Determine the number of positive integers m such that $m \leq n$ and $m^{2}+1$ is divisible by n.

