AoPS Community

Organized by Australian Maths Trust

www.artofproblemsolving.com/community/c1267963
by The_Maitreyo 1

DAY 1 Determine all pairs of (a, b) of non negative integers such that:

$$
\frac{a+b}{2}-\sqrt{a b}=1
$$

- Amy and Bee play the following game. Initially, there are three piles, each containing 2020 stones. The players take turns to make a move, with Amy going first. Each move consists of choosing one of the piles available, removing the unchosen pile(s) from the game, and then dividing the chosen pile into 2 or 3 non-empty piles. A player looses the game if they are unable to make a move.

Prove that Bee can always win the game,no matter how Amy plays

- Let $A B C$ be a triangle with right angle at $\angle C$. Suppose that the tangent line at C to the circle passing through A, B, C intersects the line $A B$ at D. Let E be the midpoint of $C D$ and let F be the point on the line $E B$ such that $A F$ is parallel to $C D$. Prove that the lines $A B$ and $C F$ are perpendicular.
- \quad Define the sequence A_{1}, A_{2}, \cdots by $A_{1}=1$ and for $n=2,3,4, \cdots$,

$$
A_{n+1}=\frac{A_{n}+2}{A_{n}+1}
$$

Define another sequence B_{1}, B_{2}, \cdots by $B_{1}=1$ and for $n=2,3,4, \cdots$,

$$
B_{n+1}=\frac{B_{n}^{2}+2}{2 B_{n}}
$$

Prove that $B_{n+1}=A_{2^{n}}$ for all non-negative integers n.
DAY 2 Each term of an infinite sequene a_{1}, a_{2}, \cdots is equal to 0 or 1 . For each positive integer n,
$-a_{n}+a_{n+1} \neq a_{n+2}+a_{n+3}$ and

- $a_{n}+a_{n+1}+a_{n+2} \neq a_{n+3}+a_{n+4}+a_{n+5}$

Prove that if $a_{1}=0$, then $a_{2020}=1$

- Upvote if you got IMO 2011 vibes :rotfl:

Let $A B C D$ be a square. For a point P inside it, a windmill centred at P consists of 2 perpendicular lines l_{1} and l_{2} passing through P, such that $\bullet l_{1}$ intersects the sides AB and CD at W and Y, respectively, and $\bullet l_{2}$ intersects the side $B C$ and $D A$ at X and Z, respectively.
A windmill is called round if the quadrilateral WXYZ is cyclic. Determine all points P inside the square such that every windmill centred at P is round.

- A tetramino tile is a tile that can be formed by gluing together four unit square tiles, edge to edge. For each natural number n , consider a bathroom whose floor is in the shape of a $2 * 2 n$ rectangle. Let T_{n} be the number of ways to tile this bathroom floor with tetramino tiles. Prove that, each of the numbers $T_{1}, T_{2}, T_{3}, \cdots$ is a perfect square.
- \quad Prove that for each integer K satisfying $2 \leq k \leq 100$, there are positive integers $b_{2}, b_{3}, \cdots, b_{101}$ such that:

$$
b_{2}^{2}+b_{3}^{3}+\cdots+b_{k}^{k}=b_{k}^{k}+\cdots+b_{101}^{101}
$$

@below, typo rectified!

