AoPS Community

14th Middle European Mathematical Olympiad 2020

www.artofproblemsolving.com/community/c1277570
by XbenX
\# Let \mathbb{N} be the set of positive integers. Determine all positive integers k for which there exist functions $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ such that g assumes infinitely many values and such that

$$
f^{g(n)}(n)=f(n)+k
$$

holds for every positive integer n.
(Remark. Here, f^{i} denotes the function f applied i times i.e $f^{i}(j)=f(f(\ldots f(j) \ldots))$)
\# We call a positive integer N contagious if there are 1000 consecutive non-negative integers such that the sum of all their digits is N. Find all contagious positive integers.
\# Let $A B C$ be an acute scalene triangle with circumcircle ω and incenter I. Suppose the orthocenter H of $B I C$ lies inside ω. Let M be the midpoint of the longer $\operatorname{arc} B C$ of ω. Let N be the midpoint of the shorter arc $A M$ of ω.
Prove that there exists a circle tangent to ω at N and tangent to the circumcircles of $B H I$ and CHI.
\# Find all positive integers n for which there exist positive integers $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
\frac{1}{x_{1}^{2}}+\frac{2}{x_{2}^{2}}+\frac{2^{2}}{x_{3}^{2}}+\cdots+\frac{2^{n-1}}{x_{n}^{2}}=1
$$

