## AoPS Community

The problems from the 27th Macedonian National Olympiad
www.artofproblemsolving.com/community/c1279117
by Lukaluce

1 Let $a, b$ be positive integers and $p, q$ be prime numbers for which $p \nmid q-1$ and $q \mid a^{p}-b^{p}$. Prove that $q \mid a-b$.

2 Let $x_{1}, \ldots, x_{n}(n \geq 2)$ be real numbers from the interval [1,2]. Prove that
$\left|x_{1}-x_{2}\right|+\ldots+\left|x_{n}-x_{1}\right| \leq \frac{2}{3}\left(x_{1}+\ldots+x_{n}\right)$,
with equality holding if and only if $n$ is even and the $n$-tuple $\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)$ is equal to $(1,2, \ldots, 1,2)$ or $(2,1, \ldots, 2,1)$.

3 Let $A B C$ be a triangle, and $A_{1}, B_{1}, C_{1}$ be points on the sides $B C, C A, A B$, respectively, such that $A A_{1}, B B_{1}, C C_{1}$ are the internal angle bisectors of $\triangle A B C$. The circumcircle $k^{\prime}=\left(A_{1} B_{1} C_{1}\right)$ touches the side $B C$ at $A_{1}$. Let $B_{2}$ and $C_{2}$, respectively, be the second intersection points of $k^{\prime}$ with lines $A C$ and $A B$. Prove that $|A B|=|A C|$ or $\left|A C_{1}\right|=\left|A B_{2}\right|$.
$4 \quad$ Let $S$ be a nonempty finite set, and $\mathcal{F}$ be a collection of subsets of $S$ such that the following conditions are met:
(i) $\mathcal{F} \backslash S \neq \emptyset$;
(ii) if $F_{1}, F_{2} \in \mathcal{F}$, then $F_{1} \cap F_{2} \in \mathcal{F}$ and $F_{1} \cup F_{2} \in \mathcal{F}$.

Prove that there exists $a \in S$ which belongs to at most half of the elements of $\mathcal{F}$.

