

AoPS Community

2020 Macedonian Nationl Olympiad

The problems from the 27th Macedonian National Olympiad

www.artofproblemsolving.com/community/c1279117 by Lukaluce

1	Let a, b be positive integers and p, q be prime numbers for which $p \nmid q - 1$ and $q \mid a^p - b^p$. Prove that $q \mid a - b$.
2	Let $x_1,, x_n$ ($n \ge 2$) be real numbers from the interval [1, 2]. Prove that
	$ x_1 - x_2 + \ldots + x_n - x_1 \le \frac{2}{3}(x_1 + \ldots + x_n)$,
	with equality holding if and only if n is even and the n -tuple $(x_1, x_2,, x_{n-1}, x_n)$ is equal to $(1, 2,, 1, 2)$ or $(2, 1,, 2, 1)$.
3	Let ABC be a triangle, and A_1, B_1, C_1 be points on the sides BC, CA, AB , respectively, such that AA_1, BB_1, CC_1 are the internal angle bisectors of $\triangle ABC$. The circumcircle $k' = (A_1B_1C_1)$ touches the side BC at A_1 . Let B_2 and C_2 , respectively, be the second intersection points of k' with lines AC and AB . Prove that $ AB = AC $ or $ AC_1 = AB_2 $.
4	Let <i>S</i> be a nonempty finite set, and \mathcal{F} be a collection of subsets of <i>S</i> such that the following conditions are met: (i) $\mathcal{F} \setminus S \neq \emptyset$; (ii) if $F_1, F_2 \in \mathcal{F}$, then $F_1 \cap F_2 \in \mathcal{F}$ and $F_1 \cup F_2 \in \mathcal{F}$.

Prove that there exists $a \in S$ which belongs to at most half of the elements of \mathcal{F} .

🟟 AoPS Online 🔯 AoPS Academy 🐲 AoPS 🗱