AoPS Community

The problems from the 24th Junior Macedonian Mathematical Olympiad
www.artofproblemsolving.com/community/c1287078
by Lukaluce

1 Let S be the set of all positive integers n such that each of the numbers $n+1, n+3, n+4, n+5$, $n+6$, and $n+8$ is composite. Determine the largest integer k with the following property: For each $n \in S$ there exist at least k consecutive composite integers in the set $n, n+1, n+2, n+3, n+4, n+5, n+6, n+7, n+8, n+9$.

2 Let x, y, and z be positive real numbers such that $x y+y z+z x=27$. Prove that $x+y+z \geq \sqrt{3 x y z}$.
When does equality hold?
3 Solve the following equation in the set of integers
$x^{5}+2=3 \cdot 101^{y}$.
4 Let $A B C$ be an isosceles triangle with base $A C$. Points D and E are chosen on the sides $A C$ and $B C$, respectively, such that $C D=D E$. Let H, J, and K be the midpoints of $D E, A E$, and $B D$, respectively. The circumcircle of triangle $D H K$ intersects $A D$ at point F, whereas the circumcircle of triangle $H E J$ intersects $B E$ at G. The line through K parallel to $A C$ intersects $A B$ at I. Let $I H \cap G F=M$. Prove that J, M, and K are collinear points.

5 Let T be a triangle whose vertices have integer coordinates, such that each side of T contains exactly m points with integer coordinates. If the area of T is less than 2020 , determine the largest possible value of m.

