AoPS Community

China Second Round Olympiad 2020
www.artofproblemsolving.com/community/c1294613
by Henry_2001, fwbx529

1 In triangle $A B C, A B=B C$, and let I be the incentre of $\triangle A B C . M$ is the midpoint of segment $B I$. P lies on segment $A C$, such that $A P=3 P C$. H lies on line $P I$, such that $M H \perp P H . Q$ is the midpoint of the arc $A B$ of the circumcircle of $\triangle A B C$. Prove that $B H \perp Q H$.

2 Let $n \geq 3$ be a given integer, and let $a_{1}, a_{2}, \cdots, a_{2 n}, b_{1}, b_{2}, \cdots, b_{2 n}$ be $4 n$ nonnegative reals, such that

$$
a_{1}+a_{2}+\cdots+a_{2 n}=b_{1}+b_{2}+\cdots+b_{2 n}>0,
$$

and for any $i=1,2, \cdots, 2 n, a_{i} a_{i+2} \geq b_{i}+b_{i+1}$, where $a_{2 n+1}=a_{1}, a_{2 n+2}=a_{2}, b_{2 n+1}=b_{1}$. Detemine the minimum of $a_{1}+a_{2}+\cdots+a_{2 n}$.

3 Let $a_{1}=1, a_{2}=2, a_{n}=2 a_{n-1}+a_{n-2}, n=3,4, \cdots$. Prove that for any integer $n \geq 5, a_{n}$ has at least one prime factor p, such that $p \equiv 1(\bmod 4)$.

4 Given a convex polygon with 20 vertexes, there are many ways of traingulation it (as 18 triangles). We call the diagram of triangulation, meaning the 20 vertexes, with 37 edges(17 triangluation edges and the original 20 edges), a T-diagram. And the subset of this T-diagram with 10 edges which covers all 20 vertexes(meaning any two edges in the subset doesn't cover the same vertex) calls a "perfect matching" of this T-diagram. Among all the T-diagrams, find the maximum number of "perfect matching" of a T-diagram.

