AoPS Community

Mediterranean Mathematics Olympiad 2020

www.artofproblemsolving.com/community/c1307077
by parmenides51

1 Determine all integers $m \geq 2$ for which there exists an integer $n \geq 1$ with $\operatorname{gcd}(m, n)=d$ and $\operatorname{gcd}(m, 4 n+1)=1$.
Proposed by Gerhard Woeginger, Austria
2 Let S be a set of $n \geq 2$ positive integers. Prove that there exist at least n^{2} integers that can be written in the form $x+y z$ with $x, y, z \in S$.

Proposed by Gerhard Woeginger, Austria
3 Prove that all postive real numbers a, b, c with $a+b+c=4$ satisfy the inequality

$$
\frac{a b}{\sqrt[4]{3 c^{2}+16}}+\frac{b c}{\sqrt[4]{3 a^{2}+16}}+\frac{c a}{\sqrt[4]{3 b^{2}+16}} \leq \frac{4}{3} \sqrt[4]{12}
$$

$4 \quad$ Let P, Q, R be three points on a circle k_{1} with $|P Q|=|P R|$ and $|P Q|>|Q R|$. Let k_{2} be the circle with center in P that goes through Q and R. The circle with center Q through R intersects k_{1} in another point $X \neq R$ and intersects k_{2} in another point $Y \neq R$. The two points X and R lie on different sides of the line through $P Q$. Show that the three points P, X, Y lie on a common line.

