

AoPS Community

2020 Mediterranean Mathematics Olympiad

Mediterranean Mathematics Olympiad 2020

www.artofproblemsolving.com/community/c1307077 by parmenides51

1 Determine all integers $m \ge 2$ for which there exists an integer $n \ge 1$ with gcd(m, n) = d and gcd(m, 4n + 1) = 1.

Proposed by Gerhard Woeginger, Austria

2 Let *S* be a set of $n \ge 2$ positive integers. Prove that there exist at least n^2 integers that can be written in the form x + yz with $x, y, z \in S$.

Proposed by Gerhard Woeginger, Austria

3 Prove that all postive real numbers a, b, c with a + b + c = 4 satisfy the inequality

$$\frac{ab}{\sqrt[4]{3c^2+16}} + \frac{bc}{\sqrt[4]{3a^2+16}} + \frac{ca}{\sqrt[4]{3b^2+16}} \leq \frac{4}{3}\sqrt[4]{12}$$

4 Let P, Q, R be three points on a circle k_1 with |PQ| = |PR| and |PQ| > |QR|. Let k_2 be the circle with center in P that goes through Q and R. The circle with center Q through R intersects k_1 in another point $X \neq R$ and intersects k_2 in another point $Y \neq R$. The two points X and R lie on different sides of the line through PQ. Show that the three points P, X, Y lie on a common line.

AoPS Online AoPS Academy AoPS Method

Art of Problem Solving is an ACS WASC Accredited School.