

AoPS Community

paper 1

_

2019 Irish Math Olympiad

www.artofproblemsolving.com/community/c1326349 by parmenides51

1	Define the <i>quasi-primes</i> as follows. • The first quasi-prime is $q_1 = 2$ • For $n \ge 2$, the n^{th} quasi-prime q_n is the smallest integer greater than q_{n_1} and not of the form q_iq_j for some $1 \le i \le j \le n-1$.
	Determine, with proof, whether or not 1000 is a quasi-prime.
2	Jenny is going to attend a sports camp for 7 days. Each day, she will play exactly one of three sports: hockey, tennis or camogie. The only restriction is that in any period of 4 consecutive days, she must play all three sports. Find, with proof, the number of possible sports schedules for Jennys week.
3	A quadrilateral $ABCD$ is such that the sides AB and DC are parallel, and $ BC = AB + CD $. Prove that the angle bisectors of the angles $\angle ABC$ and $\angle BCD$ intersect at right angles on the side AD .
4	Find the set of all quadruplets (x, y, z, w) of non-zero real numbers which satisfy
	$1 + \frac{1}{x} + \frac{2(x+1)}{xy} + \frac{3(x+1)(y+2)}{xyz} + \frac{4(x+1)(y+2)(z+3)}{xyzw} = 0$
5	Let M be a point on the side BC of triangle ABC and let P and Q denote the circumcentres of triangles ABM and ACM respectively. Let L denote the point of intersection of the extended lines BP and CQ and let K denote the reflection of L through the line PQ . Prove that M, P, Q and K all lie on the same circle.
_	paper 2
6	The number 2019 has the following nice properties: (a) It is the sum of the fourth powers of fuve distinct positive integers. (b) It is the sum of six consecutive positive integers. In fact, $2019 = 1^4 + 2^4 + 3^4 + 5^4 + 6^4$ (1) $2019 = 334 + 335 + 336 + 337 + 338 + 339$ (2) Prove that 2019 is the smallest number that satis es both (a) and (b). (You may assume that (1) and (2) are correct!)
7	Three non-zero real numbers a, b, c satisfy $a + b + c = 0$ and $a^4 + b^4 + c^4 = 128$. Determine all possible values of $ab + bc + ca$.

AoPS Community

- **8** Consider a point *G* in the interior of a parallelogram *ABCD*. A circle Γ through *A* and *G* intersects the sides *AB* and *AD* for the second time at the points *E* and *F* respectively. The line *FG* extended intersects the side *BC* at *H* and the line *EG* extended intersects the side *CD* at *I*. The circumcircle of triangle *HGI* intersects the circle Γ for the second time at $M \neq G$. Prove that *M* lies on the diagonal *AC*.
- **9** Suppose x, y, z are real numbers such that $x^2 + y^2 + z^2 + 2xyz = 1$. Prove that $8xyz \le 1$, with equality if and only if (x, y, z) is one of the following:

$$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \left(-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right), \left(-\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\right), \left(\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}\right)$$

Island Hopping Holidays offer short holidays to 64 islands, labeled Island *i*, 1 ≤ *i* ≤ 64. A guest chooses any Island *a* for the fi rst night of the holiday, moves to Island *b* for the second night, and finally moves to Island *c* for the third night. Due to the limited number of boats, we must have b ∈ T_a and c ∈ T_b, where the sets T_i are chosen so that

(a) each T_i is non-empty, and *i* ∉ T_i,
(b) ∑_{i=1}⁶⁴ |T_i| = 128, where |T_i| is the number of elements of T_i.
Exhibit a choice of sets T_i giving at least 63 · 64 + 6 = 4038 possible holidays.
Note that c = a is allowed, and holiday choices (*a*, *b*, *c*) and (*a'*, *b'*, *c'*) are considered distinct if *a* ≠ *a'* or *b* ≠ *b'* or *c* ≠ *c'*.

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱