Art of Problem Solving

AoPS Community

www.artofproblemsolving.com/community/c1326349
by parmenides51

- paper 1

1 De fine the quasi-primes as follows. • The first quasi-prime is $q_{1}=2 \bullet$ For $n \geq 2$, the $n^{\text {th }}$ quasiprime q_{n} is the smallest integer greater than $q_{n_{1}}$ and not of the form $q_{i} q_{j}$ for some $1 \leq i \leq j \leq$ $n-1$.
Determine, with proof, whether or not 1000 is a quasi-prime.
2 Jenny is going to attend a sports camp for 7 days. Each day, she will play exactly one of three sports: hockey, tennis or camogie. The only restriction is that in any period of 4 consecutive days, she must play all three sports. Find, with proof, the number of possible sports schedules for Jennys week.

3 A quadrilateral $A B C D$ is such that the sides $A B$ and $D C$ are parallel, and $|B C|=|A B|+|C D|$. Prove that the angle bisectors of the angles $\angle A B C$ and $\angle B C D$ intersect at right angles on the side $A D$.

4 Find the set of all quadruplets (x, y, z, w) of non-zero real numbers which satisfy

$$
1+\frac{1}{x}+\frac{2(x+1)}{x y}+\frac{3(x+1)(y+2)}{x y z}+\frac{4(x+1)(y+2)(z+3)}{x y z w}=0
$$

$5 \quad$ Let M be a point on the side $B C$ of triangle $A B C$ and let P and Q denote the circumcentres of triangles $A B M$ and $A C M$ respectively. Let L denote the point of intersection of the extended lines $B P$ and $C Q$ and let K denote the reflection of L through the line $P Q$. Prove that M, P, Q and K all lie on the same circle.

- paper 2

6 The number 2019 has the following nice properties:
(a) It is the sum of the fourth powers of fuve distinct positive integers.
(b) It is the sum of six consecutive positive integers.

In fact, $2019=1^{4}+2^{4}+3^{4}+5^{4}+6^{4}$ (1) $2019=334+335+336+337+338+339$ (2)
Prove that 2019 is the smallest number that satis es both (a) and (b).
(You may assume that (1) and (2) are correct!)
7 Three non-zero real numbers a, b, c satisfy $a+b+c=0$ and $a^{4}+b^{4}+c^{4}=128$. Determine all possible values of $a b+b c+c a$.

8 Consider a point G in the interior of a parallelogram $A B C D$. A circle Γ through A and G intersects the sides $A B$ and $A D$ for the second time at the points E and F respectively. The line $F G$ extended intersects the side $B C$ at H and the line $E G$ extended intersects the side $C D$ at I. The circumcircle of triangle $H G I$ intersects the circle Γ for the second time at $M \neq G$. Prove that M lies on the diagonal $A C$.

9 Suppose x, y, z are real numbers such that $x^{2}+y^{2}+z^{2}+2 x y z=1$. Prove that $8 x y z \leq 1$, with equality if and only if (x, y, z) is one of the following:

$$
\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right),\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right),\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right),\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)
$$

10 Island Hopping Holidays offer short holidays to 64 islands, labeled Island $i, 1 \leq i \leq 64$. A guest chooses any Island a for the fi rst night of the holiday, moves to Island b for the second night, and finally moves to Island c for the third night. Due to the limited number of boats, we must have $b \in T_{a}$ and $c \in T_{b}$, where the sets T_{i} are chosen so that
(a) each T_{i} is non-empty, and $i \notin T_{i}$,
(b) $\sum_{i=1}^{64}\left|T_{i}\right|=128$, where $\left|T_{i}\right|$ is the number of elements of T_{i}.

Exhibit a choice of sets T_{i} giving at least $63 \cdot 64+6=4038$ possible holidays.
Note that $\mathrm{c}=\mathrm{a}$ is allowed, and holiday choices (a, b, c) and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ are considered distinct if $a \neq a^{\prime}$ or $b \neq b^{\prime}$ or $c \neq c^{\prime}$.

