AoPS Community

www.artofproblemsolving.com/community/c133020
by Tintarn, Kezer, hajimbrak

- VAIMO 1

1 Find the least positive integer n, such that there is a polynomial

$$
P(x)=a_{2 n} x^{2 n}+a_{2 n-1} x^{2 n-1}+\cdots+a_{1} x+a_{0}
$$

with real coefficients that satisfies both of the following properties:

- For $i=0,1, \ldots, 2 n$ it is $2014 \leq a_{i} \leq 2015$.
- There is a real number ξ with $P(\xi)=0$.

2 A positive integer n is called naughty if it can be written in the form $n=a^{b}+b$ with integers $a, b \geq 2$.
Is there a sequence of 102 consecutive positive integers such that exactly 100 of those numbers are naughty?
$3 \quad$ Let $A B C$ be an acute triangle with $|A B| \neq|A C|$ and the midpoints of segments $[A B]$ and $[A C]$ be D resp. E. The circumcircles of the triangles $B C D$ and $B C E$ intersect the circumcircle of triangle $A D E$ in P resp. Q with $P \neq D$ and $Q \neq E$.
Prove $|A P|=|A Q|$.
$[i]$ (Notation: $|\cdot|$ denotes the length of a segment and $[\cdot]$ denotes the line segment.) $[/ i]$

- VAIMO 2

1 Determine all pairs (x, y) of positive integers such that

$$
\sqrt[3]{7 x^{2}-13 x y+7 y^{2}}=|x-y|+1
$$

Proposed by Titu Andreescu, USA
2 Let $A B C$ be an acute triangle with the circumcircle k and incenter I. The perpendicular through I in $C I$ intersects segment $[B C]$ in U and k in V. In particular V and A are on different sides of $B C$. The parallel line through U to $A I$ intersects $A V$ in X.
Prove: If $X I$ and $A I$ are perpendicular to each other, then $X I$ intersects segment $[A C]$ in its midpoint M.
[i](Notation: [.] denotes the line segment.)[/i]

3 Construct a tetromino by attaching two 2×1 dominoes along their longer sides such that the midpoint of the longer side of one domino is a corner of the other domino. This construction yields two kinds of tetrominoes with opposite orientations. Let us call them S - and Z tetrominoes, respectively.
Assume that a lattice polygon P can be tiled with S-tetrominoes. Prove that no matter how we tile P using only S - and Z-tetrominoes, we always use an even number of Z-tetrominoes.

Proposed by Tamas Fleiner and Peter Pal Pach, Hungary

