

AoPS Community

2015 Germany Team Selection Test

www.artofproblemsolving.com/community/c133020 by Tintarn, Kezer, hajimbrak

-	VAIMO 1
1	Find the least positive integer n, such that there is a polynomial
	$P(x) = a_{2n}x^{2n} + a_{2n-1}x^{2n-1} + \dots + a_1x + a_0$
	with real coefficients that satisfies both of the following properties: - For $i = 0, 1,, 2n$ it is $2014 \le a_i \le 2015$. - There is a real number ξ with $P(\xi) = 0$.
2	A positive integer n is called <i>naughty</i> if it can be written in the form $n = a^b + b$ with integers $a, b \ge 2$. Is there a sequence of 102 consecutive positive integers such that exactly 100 of those numbers are naughty?
3	Let ABC be an acute triangle with $ AB \neq AC $ and the midpoints of segments $[AB]$ and $[AC]$ be D resp. E . The circumcircles of the triangles BCD and BCE intersect the circumcircle of triangle ADE in P resp. Q with $P \neq D$ and $Q \neq E$. Prove $ AP = AQ $.
	[i](Notation: $ \cdot $ denotes the length of a segment and $[\cdot]$ denotes the line segment.)[/i]
-	VAIMO 2
1	Determine all pairs (x, y) of positive integers such that
	$\sqrt[3]{7x^2 - 13xy + 7y^2} = x - y + 1.$
	Proposed by Titu Andreescu, USA
2	Let ABC be an acute triangle with the circumcircle k and incenter I . The perpendicular through I in CI intersects segment $[BC]$ in U and k in V . In particular V and A are on different sides of BC . The parallel line through U to AI intersects AV in X . Prove: If XI and AI are perpendicular to each other, then XI intersects segment $[AC]$ in its midpoint M .

[i](Notation: $[\cdot]$ denotes the line segment.)[/i]

AoPS Community

2015 Germany Team Selection Test

3 Construct a tetromino by attaching two 2×1 dominoes along their longer sides such that the midpoint of the longer side of one domino is a corner of the other domino. This construction yields two kinds of tetrominoes with opposite orientations. Let us call them *S*- and *Z*-tetrominoes, respectively.

Assume that a lattice polygon P can be tiled with S-tetrominoes. Prove that no matter how we tile P using only S- and Z-tetrominoes, we always use an even number of Z-tetrominoes.

Proposed by Tamas Fleiner and Peter Pal Pach, Hungary

Act of Problem Solving is an ACS WASC Accredited School.