Art of Problem Solving

AoPS Community

National Science Olympiad 2020

www.artofproblemsolving.com/community/c1352780
by parmenides51, somebodyyouusedtoknow, GorgonMathDota

- Day 1

1 Since this is already 3 PM (GMT +7) in Jakarta, might as well post the problem here.
Problem 1. Given an acute triangle $A B C$ and the point D on segment $B C$. Circle c_{1} passes through A, D and its centre lies on $A C$. Whereas circle c_{2} passes through A, D and its centre lies on $A B$. Let $P \neq A$ be the intersection of c_{1} with $A B$ and $Q \neq A$ be the intersection of c_{2} with $A C$. Prove that $A D$ bisects $\angle P D Q$.

2 Problem 2. Let $P(x)=a x^{2}+b x+c$ where a, b, c are real numbers. If

$$
P(a)=b c, \quad P(b)=a c, \quad P(c)=a b
$$

then prove that

$$
(a-b)(b-c)(c-a)(a+b+c)=0 .
$$

3 The wording is just ever so slightly different, however the problem is identical.
Problem 3. Determine all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $n^{2}+f(n) f(m)$ is a multiple of $f(n)+m$ for all natural numbers m, n.

4 Problem 4. A chessboard with $2 n \times 2 n$ tiles is coloured such that every tile is coloured with one out of n colours. Prove that there exists 2 tiles in either the same column or row such that if the colours of both tiles are swapped, then there exists a rectangle where all its four corner tiles have the same colour.

```
- Day 2
```

$5 \quad$ A set A contains exactly n integers, each of which is greater than 1 and every of their prime factors is less than 10. Determine the smallest n such that A must contain at least two distinct elements a and b such that $a b$ is the square of an integer.

6 Given a cyclic quadrilateral $A B C D$. Let X be a point on segment $B C(X \neq B C)$ such that line $A X$ is perpendicular to the angle bisector of $\angle C B D$, and Y be a point on segment $A D(Y \neq D)$ such that $B Y$ is perpendicular to the angle bisector of $\angle C A D$. Prove that $X Y$ is parallel to $C D$.

7 Determine all real-coefficient polynomials $P(x)$ such that

$$
P(\lfloor x\rfloor)=\lfloor P(x)\rfloor
$$

for every real numbers x.
8 Determine the smallest natural number $n>2$, or show that no such natural numbers n exists, that satisfy the following condition: There exists natural numbers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{k=1}^{n-1} \underbrace{\left(\frac{1}{\operatorname{gcd}\left(a_{k}, a_{k+1}\right)}+\frac{1}{\operatorname{gcd}\left(a_{k}, a_{k+2}\right)}+\cdots+\frac{1}{\operatorname{gcd}\left(a_{k}, a_{n}\right)}\right)}_{n-k \text { terms }}
$$

