AoPS Community

European Mathematical Cup 2012

www.artofproblemsolving.com/community/c138269
by Sayan, Matematika

- Junior Division

1 Let $A B C$ be a triangle and Q a point on the internal angle bisector of $\angle B A C$. Circle ω_{1} is circumscribed to triangle $B A Q$ and intersects the segment $A C$ in point $P \neq C$. Circle ω_{2} is circumscribed to the triangle $C Q P$. Radius of the cirlce ω_{1} is larger than the radius of ω_{2}. Circle centered at Q with radius $Q A$ intersects the circle ω_{1} in points A and A_{1}. Circle centered at Q with radius $Q C$ intersects ω_{1} in points C_{1} and C_{2}. Prove $\angle A_{1} B C_{1}=\angle C_{2} P A$.

Proposed by Matija Buci.
$2 \quad$ Let S be the set of positive integers. For any a and b in the set we have $G C D(a, b)>1$. For any a, b and c in the set we have $G C D(a, b, c)=1$. Is it possible that S has 2012 elements?

Proposed by Ognjen Stipeti.
3 Are there positive real numbers x, y and z such that
$x^{4}+y^{4}+z^{4}=13$,
$x^{3} y^{3} z+y^{3} z^{3} x+z^{3} x^{3} y=6 \sqrt{3}$,
$x^{3} y z+y^{3} z x+z^{3} x y=5 \sqrt{3}$?
Proposed by Matko Ljulj.
$4 \quad$ Let k be a positive integer. At the European Chess Cup every pair of players played a game in which somebody won (there were no draws). For any k players there was a player against whom they all lost, and the number of players was the least possible for such k. Is it possible that at the Closing Ceremony all the participants were seated at the round table in such a way that every participant was seated next to both a person he won against and a person he lost against.

Proposed by Matija Buci.

- \quad Senior Division

1 Find all positive integers a, b, n and prime numbers p that satisfy

$$
a^{2013}+b^{2013}=p^{n} .
$$

Proposed by Matija Buci.

2 Let $A B C$ be an acute triangle with orthocenter H. Segments $A H$ and $C H$ intersect segments $B C$ and $A B$ in points A_{1} and C_{1} respectively. The segments $B H$ and $A_{1} C_{1}$ meet at point D. Let P be the midpoint of the segment $B H$. Let D^{\prime} be the reflection of the point D in $A C$. Prove that quadrilateral $A P C D^{\prime}$ is cyclic.

Proposed by Matko Ljulj.

3 Prove that the following inequality holds for all positive real numbers a, b, c, d, e and f

$$
\sqrt[3]{\frac{a b c}{a+b+d}}+\sqrt[3]{\frac{d e f}{c+e+f}}<\sqrt[3]{(a+b+d)(c+e+f)}
$$

Proposed by Dimitar Trenevski.
4 Olja writes down n positive integers $a_{1}, a_{2}, \ldots, a_{n}$ smaller than p_{n} where p_{n} denotes the n-th prime number. Oleg can choose two (not necessarily different) numbers x and y and replace one of them with their product $x y$. If there are two equal numbers Oleg wins. Can Oleg guarantee a win?

Proposed by Matko Ljulj.

