2020 Balkan MO

AoPS Community

Balkan MO 2020

www.artofproblemsolving.com/community/c1449563 by augustin_p, dangerousliri

-	November 1st
---	--------------

1 Let ABC be an acute triangle with AB = AC, let D be the midpoint of the side AC, and let γ be the circumcircle of the triangle ABD. The tangent of γ at A crosses the line BC at E. Let O be the circumcenter of the triangle ABE. Prove that midpoint of the segment AO lies on γ .

Proposed by Sam Bealing, United Kingdom

2 Denote $\mathbb{Z}_{>0} = \{1, 2, 3, ...\}$ the set of all positive integers. Determine all functions $f : \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ such that, for each positive integer n, $i \sum_{k=1}^{n} f(k)$ is a perfect square, and ii f(n) divides n^3 .

Proposed by Dorlir Ahmeti, Albania

3 Let *k* be a positive integer. Determine the least positive integer *n*, with $n \ge k + 1$, for which the game below can be played indefinitely:

Consider n boxes, labelled $b_1, b_2, ..., b_n$. For each index i, box b_i contains exactly i coins. At each step, the following three substeps are performed in order:

(1) Choose k + 1 boxes;

(2) Of these k + 1 boxes, choose k and remove at least half of the coins from each, and add to the remaining box, if labelled b_i , a number of i coins.

(3) If one of the boxes is left empty, the game ends; otherwise, go to the next step.

Proposed by Demetres Christofides, Cyprus

4 Let $a_1 = 2$ and, for every positive integer n, let a_{n+1} be the smallest integer strictly greater than a_n that has more positive divisors than a_n . Prove that $2a_{n+1} = 3a_n$ only for finitely many indicies n.

Proposed by Ilija Jovčevski, North Macedonia

🐼 AoPSOnline 🐼 AoPSAcademy 🐼 AoPS 🕬