Art of Problem Solving

## AoPS Community

## Kazakhstan National Olympiad 2006

www.artofproblemsolving.com/community/c1459269
by parmenides51

- $\quad$ grade 11
- day 1

1 Natural numbers from 1 to 200 were divided into 50 sets. Prove that one of them contains three numbers that are the lengths of the sides of some triangle

2 Product of square trinomials $x^{2}+a_{1} x+b_{1}, x^{2}+a_{2} x+b_{2}, \ldots, x^{2}+a_{n} x+b_{n}$ equals polynomial $P(x)=x^{2 n}+c_{1} x^{2 n-1}+c_{2} x^{2 n-2}+\cdots+c_{2 n-1} x+c_{2 n}$, where the coefficients $c_{1}, c_{2}, \ldots, c_{2 n}$ are positive. Prove that for some $k(1 \leq k \leq n)$ the coefficients $a_{k}$ and $b_{k}$ are positive.

3 The racing tournament has 12 stages and $n$ participants. After each stage, all participants, depending on the occupied place $k$, receive points $a_{k}$ (the numbers $a_{k}$ are natural and $a_{1}>$ $a_{2}>\cdots>a_{n}$ ). For what is the smallest $n$ the tournament organizer can choose the numbers $a_{1}, \ldots, a_{n}$ so that after the penultimate stage for any possible distribution of places at least two participants had a chance to take first place.

4 grade IX P4, X P3
The bisectors of the angles $A$ and $C$ of the triangle $A B C$ intersect the circumscirbed circle of this triangle at the points $A_{0}$ and $C_{0}$, respectively. The straight line passing through the center of the inscribed circle of triangle $A B C$ parallel to the side of $A C$, intersects with the line $A_{0} C_{0}$ at $P$. Prove that the line $P B$ is tangent to the circumcircle of the triangle $A B C$.
grade XI P4
The bisectors of the angles $A$ and $C$ of the triangle $A B C$ intersect the sides at the points $A_{1}$ and $C_{1}$, and the circumcircle of this triangle at points $A_{0}$ and $C_{0}$ respectively. Straight lines $A_{1} C_{1}$ and $A_{0} C_{0}$ intersect at point $P$. Prove that the segment connecting $P$ with the center inscribed circles of triangle $A B C$, parallel to $A C$.

## - day 2

$5 \quad$ Prove that for every $x$ such that $\sin x \neq 0$, exists natural $n$ such that $|\sin n x| \geq \frac{\sqrt{3}}{2}$.
6 In the tetrahedron $A B C D$ from the vertex $A$, the perpendiculars $A B^{\prime}, A C^{\prime}$ are drawn, $A D^{\prime}$ on planes dividing dihedral angles at edges $C D, B D, B C$ in half. Prove that the plane $\left(B^{\prime} C^{\prime} D^{\prime}\right)$ is parallel to the plane ( $B C D$ ).

7 Prove that if a natural number $N$ can be represented in the form the sum of three squares of integers divisible by 3 , then it is also is represented as the sum of three squares of integers that are not divisible by 3 .

8 What is the minimum number of cells that can be colored black in white square $300 \times 300$ so that no three black cells formed a corner, and after painting any white cell this condition violated?

