Art of Problem Solving

AoPS Community

Kazakhstan National Olympiad 2016

www.artofproblemsolving.com/community/c1459467
by parmenides51, rightways, MRF2017

- \quad grade 11
- \quad day 1

1 Prove that one can arrange all positive divisors of any given positive integer around a circle so that for any two neighboring numbers one is divisible by another.

2 Find all rational numbers a,for which there exist infinitely many positive rational numbers q such that the equation $\left[x^{a}\right] \cdot x^{a}=q$ has no solution in rational numbers.(A.Vasiliev)

3 Circles ω_{1}, ω_{2} intersect at points X, Y and they are internally tangent to circle Ω at points A, B,respectively. $A B$ intersect with ω_{1}, ω_{2} at points A_{1}, B_{1},respectively. Another circle is internally tangent to ω_{1}, ω_{2} and $A_{1} B_{1}$ at Z.Prove that $\angle A X Z=\angle B X Z$.(C.llyasov)

- day 2

4 In isosceles triangle $A B C(C A=C B), C H$ is altitude and M is midpoint of $B H$.Let K be the foot of the perpendicular from H to $A C$ and $L=B K \cap C M$. Let the perpendicular drawn from B to $B C$ intersects with $H L$ at N.Prove that $\angle A C B=2 \angle B C N$.(M. Kunhozhyn)

5101 blue and 101 red points are selected on the plane, and no three lie on one straight line. The sum of the pairwise distances between the red points is 1 (that is, the sum of the lengths of the segments with ends at red points), the sum of the pairwise distances between the blue ones is also 1 , and the sum of the lengths of the segments with the ends of different colors is 400 . Prove that you can draw a straight line separating everything red dots from all blue ones.

6 Given a strictly increasing infinite sequence $\left\{a_{n}\right\}$ of positive real numbers such that for any $n \in N$:

$$
a_{n+2}=\left(a_{n+1}-a_{n}\right)^{\sqrt{n}}+n^{-\sqrt{n}}
$$

Prove that for any $C>0$ there exist a positive integer $m(C)$ (depended on C) such that $a_{m(C)}>$ C.

