Art of Problem Solving

AoPS Community

Kazakhstan National Olympiad 2017

www.artofproblemsolving.com/community/c1459476
by parmenides51, zhumazhenis, matol.kz

- \quad grade 11
- \quad day 1

1 The non-isosceles triangle $A B C$ is inscribed in the circle ω. The tangent line to this circle at the point C intersects the line $A B$ at the point D. Let the bisector of the angle $C D B$ intersect the segments $A C$ and $B C$ at the points K and L, respectively. The point M is on the side $A B$ such that $\frac{A K}{B L}=\frac{A M}{B M}$. Let the perpendiculars from the point M to the straight lines $K L$ and $D C$ intersect the lines $A C$ and $D C$ at the points P and Q respectively. Prove that $2 \angle C Q P=\angle A C B$

2 For positive reals $x, y, z \geq \frac{1}{2}$ with $x^{2}+y^{2}+z^{2}=1$, prove this inequality holds

$$
\left(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\right)\left(\frac{1}{x}-\frac{1}{y}+\frac{1}{z}\right) \geq 2
$$

$3 \quad\left\{a_{n}\right\}$ is an infinite, strictly increasing sequence of positive integers and $a_{a_{n}} \leq a_{n}+a_{n+3}$ for all $n \geq 1$. Prove that, there are infinitely many triples (k, l, m) of positive integers such that $k<l<m$ and $a_{k}+a_{m}=2 a_{l}$

- day 2

4 The acute triangle $A B C(A C>B C)$ is inscribed in a circle with the center at the point O, and $C D$ is the diameter of this circle. The point K is on the continuation of the ray $D A$ beyond the point A. And the point L is on the segment $B D(D L>L B)$ so that $\angle O K D=\angle B A C$, $\angle O L D=\angle A B C$. Prove that the line $K L$ passes through the midpoint of the segment $A B$.

5 Consider all possible sets of natural numbers ($x_{1}, x_{2}, \ldots, x_{100}$) such that $1 \leq x_{i} \leq 2017$ for every $i=1,2, \ldots, 100$. We say that the set $\left(y_{1}, y_{2}, \ldots, y_{100}\right)$ is greater than the set $\left(z_{1}, z_{2}, \ldots, z_{100}\right)$ if $y_{i}>z_{i}$ for every $i=1,2, \ldots, 100$. What is the largest number of sets that can be written on the board, so that any set is not more than the other set?

6 Show that there exist infinitely many composite positive integers n such that n divides $2^{\frac{n-1}{2}}+1$

