Art of Problem Solving

AoPS Community

Kazakhstan National Olympiad 2001

www.artofproblemsolving.com/community/c1459914
by parmenides51

- \quad grade 11
- day 1

1 Prove that there are infinitely many natural numbers n such that $2^{n}+3^{n}$ is divisible by n.
2 In the acute triangle $A B C, L, H$ and M are the intersection points of bisectors, altitudes and medians, respectively, and O is the center of the circumscribed circle. Denote by X, Y and Z the intersection points of $A L, B L$ and $C L$ with a circle, respectively. Let N be a point on the line $O L$ such that the lines $M N$ and $H L$ are parallel. Prove that N is the intersection point of the medians of $X Y Z$.

3 For positive numbers $x_{1}, x_{2}, \ldots, x_{n}(n \geq 1)$ the following equality holds

$$
\frac{1}{1+x_{1}}+\frac{1}{1+x_{2}}+\ldots+\frac{1}{1+x_{n}}=1 .
$$

Prove that $x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n} \geq(n-1)^{n}$.
4 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the equality $f\left(x^{2}-y^{2}\right)=(x-y)(f(x)+f(y))$ for any $x, y \in \mathbb{R}$.

- day 2

$5 \quad$ Find all possible pairs of real numbers (x, y) that satisfy the equalities $y^{2}-[x]^{2}=2001$ and $x^{2}+[y]^{2}=2001$.

6 Each interior point of an equilateral triangle with sides equal to 1 lies in one of six circles of the same radius r. Prove that $r \geq \frac{\sqrt{3}}{10}$.
$7 \quad$ Two circles w_{1} and w_{2} intersect at two points P and Q. The common tangent to w_{1} and w_{2}, which is closer to the point P than to Q, touches these circles at A and B, respectively. The tangent to w_{1} at the point P intersects w_{2} at the point E (different from P), and the tangent to w_{2} at the point P intersects w_{1} at F (different from P). Let H and K be points on the rays $A F$ and $B E$, respectively, such that $A H=A P$ and $B K=B P$. Prove that the points A, H, Q, K and B lie on the same circle.

8 There are $n \geq 4$ points on the plane, the distance between any two of which is an integer. Prove that there are at least $\frac{1}{6}$ distances, each of which is divisible by 3 .

