Art of Problem Solving

AoPS Community

Kazakhstan National Olympiad 2002

www.artofproblemsolving.com/community/c1460027
by parmenides51, orl

- \quad grade 11
- \quad day 1

1 Let O be the center of the inscribed circle of the triangle $A B C$, tangent to the side of $B C$. Let M be the midpoint of $A C$, and P be the intersection point of $M O$ and $B C$. Prove that $A B=B P$ if $\angle B A C=2 \angle A C B$.

2 Let $x_{1}, x_{2}, \ldots, x_{n}$ be arbitrary real numbers. Prove the inequality

$$
\frac{x_{1}}{1+x_{1}^{2}}+\frac{x_{2}}{1+x_{1}^{2}+x_{2}^{2}}+\cdots+\frac{x_{n}}{1+x_{1}^{2}+\cdots+x_{n}^{2}}<\sqrt{n} .
$$

3 Let $A=\left(a_{1}, a_{2}, \ldots, a_{2001}\right)$ be a sequence of positive integers. Let m be the number of 3-element subsequences $\left(a_{i}, a_{j}, a_{k}\right)$ with $1 \leq i<j<k \leq 2001$, such that $a_{j}=a_{i}+1$ and $a_{k}=a_{j}+1$. Considering all such sequences A, find the greatest value of m.

4 Prove that there is a set A consisting of 2002 different natural numbers satisfying the condition: for each $a \in A$, the product of all numbers from A, except a, when divided by a gives the remainder 1.

- \quad day 2

5 On the plane is given the acute triangle $A B C$. Let A_{1} and B_{1} be the feet of the altitudes of A and B drawn from those vertices, respectively. Tangents at points A_{1} and B_{1} drawn to the circumscribed circle of the triangle $C A_{1} B_{1}$ intersect at M. Prove that the circles circumscribed around the triangles $A M B_{1}, B M A_{1}$ and $C A_{1} B_{1}$ have a common point.
$6 \quad$ Find all polynomials $P(x)$ with real coefficients that satisfy the identity $P\left(x^{2}\right)=P(x) P(x+1)$.
7 Prove that for any integers $n>m>0$ the number $2^{n}-1$ has a prime divisor not dividing $2^{m}-1$.
$8 \quad N$ grasshoppers are lined up in a row. At any time, one grasshopper is allowed to jump over exactly two grasshoppers standing to the right or left of him. At what n can grasshoppers rearrange themselves in reverse order?

