

AoPS Community

2002 Kazakhstan National Olympiad

Kazakhstan National Olympiad 2002

www.artofproblemsolving.com/community/c1460027 by parmenides51, orl

-	day 1
1	Let <i>O</i> be the center of the inscribed circle of the triangle <i>ABC</i> , tangent to the side of <i>BC</i> . Let <i>M</i> be the midpoint of <i>AC</i> , and <i>P</i> be the intersection point of <i>MO</i> and <i>BC</i> . Prove that $AB = BP$ if $\angle BAC = 2\angle ACB$.
2	Let x_1, x_2, \ldots, x_n be arbitrary real numbers. Prove the inequality
	$\frac{x_1}{1+x_1^2} + \frac{x_2}{1+x_1^2+x_2^2} + \dots + \frac{x_n}{1+x_1^2+\dots+x_n^2} < \sqrt{n}.$
3	Let $A = (a_1, a_2, \ldots, a_{2001})$ be a sequence of positive integers. Let m be the number of 3-element subsequences (a_i, a_j, a_k) with $1 \le i < j < k \le 2001$, such that $a_j = a_i + 1$ and $a_k = a_j + 1$. Considering all such sequences A , find the greatest value of m .
4	Prove that there is a set A consisting of 2002 different natural numbers satisfying the condition: for each $a \in A$, the product of all numbers from A , except a , when divided by a gives the remainder 1.
-	day 2
5	On the plane is given the acute triangle ABC . Let A_1 and B_1 be the feet of the altitudes of A and B drawn from those vertices, respectively. Tangents at points A_1 and B_1 drawn to the circumscribed circle of the triangle CA_1B_1 intersect at M . Prove that the circles circumscribed around the triangles AMB_1 , BMA_1 and CA_1B_1 have a common point.
6	Find all polynomials $P(x)$ with real coefficients that satisfy the identity $P(x^2) = P(x)P(x+1)$.
7	Prove that for any integers $n > m > 0$ the number $2^n - 1$ has a prime divisor not dividing $2^m - 1$.
8	N grasshoppers are lined up in a row. At any time, one grasshopper is allowed to jump over exactly two grasshoppers standing to the right or left of him. At what n can grasshoppers rearrange themselves in reverse order?

AoPS Online 🐼 AoPS Academy 🐲 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.