

AoPS Community

1999 Kazakhstan National Olympiad

Kazakhstan National Olympiad 1999

www.artofproblemsolving.com/community/c1460238 by parmenides51

-	grade 11
_	day 1
1	Prove that for any real numbers $a_1, a_2, \ldots, a_{100}$ there exists a real number b such that all numbers $a_i + b$ ($1 \le i \le 100$) are irrational.
2	Prove that for any odd <i>n</i> there exists a unique polynomial $P(x)$ <i>n</i> -th degree satisfying the equation $P\left(x - \frac{1}{x}\right) = x^n - \frac{1}{x^n}$. Is this true for any natural number <i>n</i> ?
3	The circle inscribed in the triangle ABC , with center O , touches the sides AB and BC at the points C_1 and A_1 , respectively. The lines CO and AO intersect the line C_1A_1 at the points K and L . M is the midpoint of AC and $\angle ABC = 60^\circ$. Prove that KLM is a regular triangle.
4	Seven dwarfs live in one house and each has its own hat. One morning one day, two dwarfs inadvertently exchanged hats. At any time, any three gnomes can sit down at the round table and exchange hats clockwise. Is it possible that by evening all the gnomes will be with their hats.
_	day 2
5	For real numbers x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_n , the inequalities hold $x_1 \ge x_2 \ge \ldots \ge x_n > 0$ and
	$y_1 \ge x_1, \ y_1 y_2 \ge x_1 x_2, \ \dots, \ y_1 y_2 \dots y_n \ge x_1 x_2 \dots x_n.$
	Prove that $ny_1 + (n-1)y_2 + \dots + y_n \ge x_1 + 2x_2 + \dots + nx_n$.
6	In a sequence of natural numbers $a_1, a_2, \ldots, a_{1999}, a_n - a_{n-1} - a_{n-2}$ is divisible by $100(3 \le n \le 1999)$. It is known that $a_1 = 19$ and $a_2 = 99$. Find the remainder of $a_1^2 + a_2^2 + \cdots + a_{1999}^2$ by 8.
7	On a sphere with radius 1, a point P is given. Three mutually perpendicular the rays emanating from the point P intersect the sphere at the points A , B and C . Prove that all such possible ABC planes pass through fixed point, and find the maximum possible area of the triangle ABC
8	Let a_1, a_2, \ldots, a_n be permutation of numbers $1, 2, \ldots, n$, where $n \ge 2$. Find the maximum value of the sum
	$S(n) = a_1 - a_2 + a_2 - a_3 + \dots + a_{n-1} - a_n .$

AoPS Community

1999 Kazakhstan National Olympiad

Act of Problem Solving is an ACS WASC Accredited School.