AoPS Community

China Team Selection Test 2020
www.artofproblemsolving.com/community/c1586355
by parmenides51, JustPostChinaTST

- Additional TST

1 Let ω be a n-th primitive root of unity. Given complex numbers $a_{1}, a_{2}, \cdots, a_{n}$, and p of them are non-zero. Let

$$
b_{k}=\sum_{i=1}^{n} a_{i} \omega^{k i}
$$

for $k=1,2, \cdots, n$. Prove that if $p>0$, then at least $\frac{n}{p}$ numbers in $b_{1}, b_{2}, \cdots, b_{n}$ are non-zero.
2 Given an isosceles triangle $\triangle A B C, A B=A C$. A line passes through M, the midpoint of $B C$, and intersects segment $A B$ and ray $C A$ at D and E, respectively. Let F be a point of $M E$ such that $E F=D M$, and K be a point on $M D$. Let Γ_{1} be the circle passes through B, D, K and Γ_{2} be the circle passes through $C, E, K . \Gamma_{1}$ and Γ_{2} intersect again at $L \neq K$. Let ω_{1} and ω_{2} be the circumcircle of $\triangle L D E$ and $\triangle L K M$. Prove that, if ω_{1} and ω_{2} are symmetric wrt L, then $B F$ is perpendicular to $B C$.

3 For a non-empty finite set A of positive integers, let $\operatorname{lcm}(A)$ denote the least common multiple of elements in A, and let $d(A)$ denote the number of prime factors of Icm (A) (counting multiplicity). Given a finite set S of positive integers, and

$$
f_{S}(x)=\sum_{\emptyset \neq A \subset S} \frac{(-1)^{|A|} x^{d(A)}}{\operatorname{lcm}(A)} .
$$

Prove that, if $0 \leq x \leq 2$, then $-1 \leq f_{S}(x) \leq 0$.
4 Show that the following equation has finitely many solutions (t, A, x, y, z) in positive integers

$$
\sqrt{t\left(1-A^{-2}\right)\left(1-x^{-2}\right)\left(1-y^{-2}\right)\left(1-z^{-2}\right)}=\left(1+x^{-1}\right)\left(1+y^{-1}\right)\left(1+z^{-1}\right)
$$

5 Let $a_{1}, a_{2}, \cdots, a_{n}$ be a permutation of $1,2, \cdots, n$. Among all possible permutations, find the minimum of

$$
\sum_{i=1}^{n} \min \left\{a_{i}, 2 i-1\right\}
$$

6 Given a simple, connected graph with n vertices and m edges. Prove that one can find at least m ways separating the set of vertices into two parts, such that the induced subgraphs on both parts are connected.

