AoPS Community

Greece JBMO TST 2020

www.artofproblemsolving.com/community/c1594892
by parmenides51

1 Let $A B C$ be a triangle with $A B>A C$. Let D be a point on side $A B$ such that $B D=A C$. Consider the circle γ passing through point D and tangent to side $A C$ at point A. Consider the circumscribed circle ω of the triangle $A B C$ that interesects the circle γ at points A and E. Prove that point E is the intersection point of the perpendicular bisectors of line segments $B C$ and $A D$.

2 Let a, b, c be positive real numbers such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3$. Prove that

$$
\frac{a+b}{a^{2}+a b+b^{2}}+\frac{b+c}{b^{2}+b c+c^{2}}+\frac{c+a}{c^{2}+c a+a^{2}} \leq 2
$$

When is the equality valid?
3 Find all pairs (a, b) of prime positive integers a, b such that number $A=3 a^{2} b+16 a b^{2}$ equals to a square of an integer.
$4 \quad$ Let A and B be two non-empty subsets of $X=\{1,2, \ldots, 8\}$ with $A \cup B=X$ and $A \cap B=\emptyset$. Let P_{A} be the product of all elements of A and let P_{B} be the product of all elements of B. Find the minimum possible value of sum $P_{A}+P_{B}$.

PS. It is a variation of JBMO Shortlist 2019 A3 (https://artofproblemsolving. com/community/ c6h2267998p17621980)

