Art of Problem Solving

AoPS Community

IberoAmerican 2020

www.artofproblemsolving.com/community/c1605716
by parmenides51, Al3jandro0000, pablock

- Day 1

1 Let $A B C$ be an acute scalene triangle such that $A B<A C$. The midpoints of sides $A B$ and $A C$ are M and N, respectively. Let P and Q be points on the line $M N$ such that $\angle C B P=\angle A C B$ and $\angle Q C B=\angle C B A$. The circumscribed circle of triangle $A B P$ intersects line $A C$ at $D(D \neq$ A) and the circumscribed circle of triangle $A Q C$ intersects line $A B$ at $E(E \neq A)$. Show that lines $B C, D P$, and $E Q$ are concurrent.

Nicols De la Hoz, Colombia
2 Let T_{n} denotes the least natural such that

$$
n \mid 1+2+3+\cdots+T_{n}=\sum_{i=1}^{T_{n}} i
$$

Find all naturals m such that $m \geq T_{m}$.
Proposed by Nicols De la Hoz
3 Let $n \geq 2$ be an integer. A sequence $\alpha=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of n integers is called Lima if $\operatorname{gcd}\left\{a_{i}-\right.$ a_{j} such that $a_{i}>a_{j}$ and $\left.1 \leq i, j \leq n\right\}=1$, that is, if the greatest common divisor of all the differences $a_{i}-a_{j}$ with $a_{i}>a_{j}$ is 1 . One operation consists of choosing two elements a_{k} and a_{ℓ} from a sequence, with $k \neq \ell$, and replacing a_{ℓ} by $a_{\ell}^{\prime}=2 a_{k}-a_{\ell}$.
Show that, given a collection of $2^{n}-1$ Lima sequences, each one formed by n integers, there are two of them, say β and γ, such that it is possible to transform β into γ through a finite number of operations.

Notes.

The sequences $(1,2,2,7)$ and $(2,7,2,1)$ have the same elements but are different. If all the elements of a sequence are equal, then that sequence is not Lima.

- Day 2

4 Show that there exists a set \mathcal{C} of 2020 distinct, positive integers that satisfies simultaneously the following properties: \bullet When one computes the greatest common divisor of each pair of elements of \mathcal{C}, one gets a list of numbers that are all distinct. • When one computes the least common multiple of each pair of elements of \mathcal{C}, one gets a list of numbers that are all distinct.

5 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x f(x-y))+y f(x)=x+y+f\left(x^{2}\right)
$$

for all real numbers x and y.
6 Let $A B C$ be an acute, scalene triangle. Let H be the orthocenter and O be the circumcenter of triangle $A B C$, and let P be a point interior to the segment $H O$. The circle with center P and radius $P A$ intersects the lines $A B$ and $A C$ again at R and S, respectively. Denote by Q the symmetric point of P with respect to the perpendicular bisector of $B C$. Prove that points P, Q, R and S lie on the same circle.

