## AoPS Community

National Math Olympiad (3rd Round) 2020
www.artofproblemsolving.com/community/c1614130
by parmenides51, Mr.C

- Algebra

1 find all functions from the reals to themselves. such that for every real $x, y$.

$$
f(y-f(x))=f(x)-2 x+f(f(y))
$$

2 let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}, c_{1}, c_{2}, \ldots, c_{n}$ be real numbers. prove that

$$
\sum_{c y c} \sqrt{\sum_{i \in\{1, \ldots, n\}}\left(3 a_{i}-b_{i}-c_{i}\right)^{2}} \geq \sum_{c y c} \sqrt{\sum_{i \in\{1,2, \ldots, n\}} a_{i}^{2}}
$$

3 find all $k$ distinct integers $a_{1}, a_{2}, \ldots, a_{k}$ such that there exists an injective function $f$ from reals to themselves such that for each positive integer $n$ we have

$$
\left\{f^{n}(x)-x \mid x \in \mathbb{R}\right\}=\left\{a_{1}+n, a_{2}+n, \ldots, a_{k}+n\right\}
$$

4 We call a polynomial $P(x)$ intresting if there are 1398 distinct positive integers $n_{1}, \ldots, n_{1398}$ such that

$$
P(x)=\sum x^{n_{i}}+1
$$

Does there exist infinitly many polynomials $P_{1}(x), P_{2}(x), \ldots$ such that for each distinct $i, j$ the polynomial $P_{i}(x) P_{j}(x)$ is interesting.

- Geometry

1 Let $A B C D$ be a Rhombus and let $w$ be it's incircle. Let $M$ be the midpoint of $A B$ the point $K$ is on $w$ and inside $A B C D$ such that $M K$ is tangent to $w$. Prove that $C D K M$ is cyclic.

2 Triangle $A B C$ with it's circumcircle $\Gamma$ is given. Points $D$ and $E$ are chosen on segment $B C$ such that $\angle B A D=\angle C A E$. The circle $\omega$ is tangent to $A D$ at $A$ with it's circumcenter lies on $\Gamma$. Reflection of $A$ through $B C$ is $A^{\prime}$. If the line $A^{\prime} E$ meet $\omega$ at $L$ and $K$. Then prove either $B L$ and $C K$ or $B K$ and $C L$ meet on $\Gamma$.

3 The circle $\Omega$ with center $I_{A}$, is the $A$-excircle of triangle $A B C$. Which is tangent to $A B, A C$ at $F, E$ respectivly. Point $D$ is the reflection of $A$ through $I_{A} B$. Lines $D I_{A}$ and $E F$ meet at $K$. Prove that ,circumcenter of $D K E$, midpoint of $B C$ and $I_{A}$ are collinear.

4 Triangle $A B C$ is given. Let $O$ be it's circumcenter. Let $I$ be the center of it's incircle.The external angle bisector of $A$ meet $B C$ at $D$. And $I_{A}$ is the $A$-excenter. The point $K$ is chosen on the line $A I$ such that $A K=2 A I$ and $A$ is closer to $K$ than $I$. If the segment $D F$ is the diameter of the circumcircle of triangle $D K I_{A}$, then prove $O F=3 O I$.

- Combinatorics

1 1). Prove a graph with $2 n$ vertices and $n+2$ edges has an independent set of size $n$ (there are $n$ vertices such that no two of them are adjacent ). 2). Find the number of graphs with $2 n$ vertices and $n+3$ edges, such that among any $n$ vertices there is an edge connecting two of them

2 For each $n$ find the number of ways one can put the numbers $\{1,2,3, \ldots, n\}$ numbers on the circle, such that if for any 4 numbers $a, b, c, d$ where $n \mid a+b-c-d$. The segments joining $a, b$ and $c, d$ do not meet inside the circle. (Two ways are said to be identical , if one can be obtained from rotaiting the other)

3 Consider a latin square of size $n$. We are allowed to choose a $1 \times 1$ square in the table, and add 1 to any number on the same row and column as the chosen square (the original square will be counted aswell), or we can add -1 to all of them instead. Can we with doing finitly many operation, reach any latin square of size $n$ ?

4 What is the maximum number of subsets of size 5 , taken from the set $A=\{1,2,3, \ldots, 20\}$ such that any 2 of them share exactly 1 element.

- Number Theory

1 Find all positive integers $n$ such that the following holds.

$$
\tau(n) \mid 2^{\sigma(n)}-1
$$

2 Find all polynomials $P$ with integer coefficients such that all the roots of $P^{n}(x)$ are integers. (here $P^{n}(x)$ means $P(P(\ldots(P(x)) \ldots))$ where $P$ is repeated $n$ times)

3 Find all functions $f$ from positive integers to themselves, such that the followings hold. 1).for each positive integer $n$ we have $f(n)<f(n+1)<f(n)+2020$. 2). for each positive integer $n$ we have $S(f(n))=f(S(n))$ where $S(n)$ is the sum of digits of $n$ in base 10 representation.

4 Prove that for every two positive integers $a, b$ greater than 1 . there exists infinitly many $n$ such that the equation $\phi\left(a^{n}-1\right)=b^{m}-b^{t}$ can't hold for any positive integers $m, t$.

