AoPS Community

Korea National Olympiad 2020

www.artofproblemsolving.com/community/c1614485
by MNJ2357, chrono223

1 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
x^{2} f(x)+y f\left(y^{2}\right)=f(x+y) f\left(x^{2}-x y+y^{2}\right)
$$

for all $x, y \in \mathbb{R}$.
$2 H$ is the orthocenter of an acute triangle $A B C$, and let M be the midpoint of $B C$. Suppose $(A H)$ meets $A B$ and $A C$ at D, E respectively. $A H$ meets $D E$ at P, and the line through H perpendicular to $A H$ meets $D M$ at Q. Prove that P, Q, B are collinear.

3 There are n boys and m girls at Daehan Mathematical High School.
Let $d(B)$ a number of girls who know Boy B each other, and let $d(G)$ a number of boys who know Girl G each other.
Each girl knows at least one boy each other.
Prove that there exist Boy B and Girl G who knows each other in condition that $\frac{d(B)}{d(G)} \geq \frac{m}{n}$.
4 Find a pair of coprime positive integers (m, n) other than (41,12) such that $m^{2}-5 n^{2}$ and $m^{2}+$ $5 n^{2}$ are both perfect squares.

5 For some positive integer n, there exists n different positive integers $a_{1}, a_{2}, \ldots, a_{n}$ such that (1) $a_{1}=1, a_{n}=2000(2) \forall i \in \mathbb{Z}$ s.t. $2 \leq i \leq n, a_{i}-a_{i-1} \in\{-3,5\}$
Determine the maximum value of n.
6 Let $A B C D E$ be a convex pentagon such that quadrilateral $A B D E$ is a parallelogram and quadrilateral $B C D E$ is inscribed in a circle. The circle with center C and radius $C D$ intersects the line $B D, D E$ at points $F, G(\neq D)$, and points A, F, G is on line I. Let H be the intersection point of line l and segment $B C$.
Consider the set of circle Ω satisfying the following condition.
Circle Ω passes through A, H and intersects the sides $A B, A E$ at point other than A.
Let $P, Q(\neq A)$ be the intersection point of circle Ω and sides $A B, A E$.
Prove that $A P+A Q$ is constant.

