AoPS Community

2020 Regional Competition For Advanced Students

Austrian Regional Competition For Advanced Students 2020

www.artofproblemsolving.com/community/c1615296
by Ln142, parmenides51

1 Let a be a positive integer. Determine all a such that the equation

$$
\left(1+\frac{1}{x}\right) \cdot\left(1+\frac{1}{x+1}\right) \cdots\left(1+\frac{1}{x+a}\right)=a-x
$$

has at least one integer solution for x.
For every such a state the respective solutions.
(Richard Henner)
2 The set M consists of all 7-digit positive integer numbers that contain (in decimal notation) each of the digits $1,3,4,6,7,8$ and 9 exactly once.
(a) Find the smallest positive difference d of two numbers from M.
(b) How many pairs (x, y) with x and y from M are there for which $x-y=d$?
(Gerhard Kirchner)
3 Let a triangle $A B C$ be given with $A B<A C$. Let the inscribed center of the triangle be I. The perpendicular bisector of side $B C$ intersects the angle bisector of $B A C$ at point S and the angle bisector of $C B A$ at point T. Prove that the points C, I, S and T lie on a circle.
(Karl Czakler)
4 Find all quadruples (p, q, r, n) of prime numbers p, q, r and positive integer numbers n, such that

$$
p^{2}=q^{2}+r^{n}
$$

(Walther Janous)

