AoPS Community

2021 Hong Kong (China) Mathematical Olympiad

www.artofproblemsolving.com/community/c1638668
by Blastzit

1 There is a table with n rows and 18 columns. Each of its cells contains a 0 or a 1 . The table satisfies the following properties:
-Every two rows are different.
-Each row contains exactly 6 cells that contain 1 .
-For every three rows, there exists a column so that the intersection of the column with the three rows (the three cells) all contain 0 .

What is the greatest possible value of n ?
2 For each positive integer n larger than 1 with prime factorization $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, its signature is defined as the sum $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$. Does there exist 2020 consecutive positive integers such that among them, there are exactly 1812 integers whose signatures are strictly smaller than 11 ?

3 Let $A B C D$ be a cyclic quadrilateral inscribed in a circle Γ such that $A B=A D$. Let E be a point on the segment $C D$ such that $B C=D E$. The line $A E$ intersect Γ again at F. The chords $A C$ and $B F$ meet at M. Let P be the symmetric point of C about M. Prove that $P E$ and $B F$ are parallel.

4 Let a, b and c be positive real numbers satisfying $a b c=1$. Prove that

$$
\frac{1}{a^{3}+2 b^{2}+2 b+4}+\frac{1}{b^{3}+2 c^{2}+2 c+4}+\frac{1}{c^{3}+2 a^{2}+2 a+4} \leq \frac{1}{3}
$$

