Art of Problem Solving

AoPS Community

Northern Mathematical Olympiad 2005

www.artofproblemsolving.com/community/c1652375
by parmenides51, zhaoli, shobber

- Day 1
$1 A B$ is a chord of a circle with center O, M is the midpoint of $A B$. A non-diameter chord is drawn through M and intersects the circle at C and D. The tangents of the circle from points C and D intersect line $A B$ at P and Q, respectively. Prove that $P A=Q B$.

2 Let f be a function from \mathbf{R} to \mathbf{R}. Suppose we have:
(1) $f(0)=0$
(2) For all $x, y \in(-\infty,-1) \cup(1, \infty)$, we have $f\left(\frac{1}{x}\right)+f\left(\frac{1}{y}\right)=f\left(\frac{x+y}{1+x y}\right)$.
(3) If $x \in(-1,0)$, then $f(x)>0$.

Prove: $\sum_{n=1}^{+\infty} f\left(\frac{1}{n^{2}+7 n+11}\right)>f\left(\frac{1}{2}\right)$ with $n \in N^{+}$.
3 Let positive numbers $a_{1}, a_{2}, \ldots, a_{3 n}(n \geq 2)$ constitute an arithmetic progression with common difference $d>0$. Prove that among any $n+2$ terms in this progression, there exist two terms $a_{i}, a_{j}(i \neq j)$ satisfying $1<\frac{\left|a_{i}-a_{j}\right|}{n d}<2$.

- Day 2

$4 \quad$ Let A be the set of n-digit integers whose digits are all from $\{1,2,3,4,5\}$. B is subset of A such that it contains digit 5 , and there is no digit 3 in front of digit 5 (i.e. for $n=2,35$ is not allowed, but 53 is allowed). How many elements does set B have?

5 Let x, y, z be positive real numbers such that $x^{2}+x y+y^{2}=\frac{25}{4}, y^{2}+y z+z^{2}=36$, and $z^{2}+z x+x^{2}=\frac{169}{4}$. Find the value of $x y+y z+z x$.
$6 \quad$ Let $0 \leq \alpha, \beta, \gamma \leq \frac{\pi}{2}$, such that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$. Prove that $2 \leq\left(1+\cos ^{2} \alpha\right)^{2} \sin ^{4} \alpha+$ $\left(1+\cos ^{2} \beta\right)^{2} \sin ^{4} \beta+\left(1+\cos ^{2} \gamma\right)^{2} \sin ^{4} \gamma \leq\left(1+\cos ^{2} \alpha\right)\left(1+\cos ^{2} \beta\right)\left(1+\cos ^{2} \gamma\right)$.

