Art of Problem Solving

AoPS Community

Northern Mathematical Olympiad 2006

www.artofproblemsolving.com/community/c1652376
by parmenides51, shobber, orl

- Day 1
$1 A B$ is the diameter of circle $O, C D$ is a non-diameter chord that is perpendicular to $A B$. Let E be the midpoint of $O C$, connect $A E$ and extend it to meet the circle at point P. Let $D P$ and $B C$ meet at F. Prove that F is the midpoint of $B C$.
$2 \quad p$ is a prime number that is greater than 2. Let $\left\{a_{n}\right\}$ be a sequence such that $n a_{n+1}=(n+$ 1) $a_{n}-\left(\frac{p}{2}\right)^{4}$.

Show that if $a_{1}=5$, the $16 \mid a_{81}$.
$3 A D$ is the altitude on side $B C$ of triangle $A B C$. If $B C+A D-A B-A C=0$, find the range of $\angle B A C$.

Alternative formulation. Let $A D$ be the altitude of triangle $A B C$ to the side $B C$. If $B C+A D=$ $A B+A C$, then find the range of $\angle A$.

4 Given a function $f(x)=x^{2}+a x+b$ with $a, b \in R$, if there exists a real number m such that $|f(m)| \leq \frac{1}{4}$ and $|f(m+1)| \leq \frac{1}{4}$, then find the maximum and minimum of the value of $\Delta=$ $a^{2}-4 b$.

- Day 2
$5 a, b, c$ are positive numbers such that $a+b+c=3$, show that:

$$
\frac{a^{2}+9}{2 a^{2}+(b+c)^{2}}+\frac{b^{2}+9}{2 b^{2}+(a+c)^{2}}+\frac{c^{2}+9}{2 c^{2}+(a+b)^{2}} \leq 5
$$

6 canceled

7 Can we put positive integers $1,2,3, \cdots 64$ into 8×8 grids such that the sum of the numbers in any 4 grids that have the form like T (3 on top and 1 under the middle one on the top, this can be rotate to any direction) can be divided by 5 ?

8 Given a sequence $\left\{a_{n}\right\}$ such that $a_{n+1}=a_{n}+\frac{1}{2006} a_{n}^{2}, n \in N, a_{0}=\frac{1}{2}$.
Prove that $1-\frac{1}{2008}<a_{2006}<1$.

