AoPS Community

Uzbekistan National Olympiad 2016

www.artofproblemsolving.com/community/c1675676
by shohvanilu
$1 \omega \omega$ is circumcircle of triangle $A B C$ and $B B_{1}, C C_{1}$ are bisectors of $A B C$. I is center incirle. $B_{1} C 1$ and ω intersects at M and N. Find the ratio of circumradius of $A B C$ to circumradius MIN.
$2 n$ is natural number and p is prime number. If $1+n p$ is square of natural number then prove that $n+1$ is equal to some sum of p square of natural numbers.

3 In triangle $A B C \omega$ is incircle and $\omega_{1}, \omega_{2}, \omega_{3}$ is tangents to ω and two sides of $A B C . r, r_{1}, r_{2}, r_{3}$ is radius of $\omega, \omega_{1}, \omega_{2}, \omega_{3}$. Prove that $\sqrt{r_{1} r_{2}}+\sqrt{r_{2} r_{3}}+\sqrt{r_{3} r_{1}}=r$
$4 a, b, c, x, y, z$ are positive real numbers and $b z+c y=a, a z+c x=b, a y+b x=c$. Find the least value of following function $f(x, y, z)=\frac{x^{2}}{1+x}+\frac{y^{2}}{1+y}+\frac{z^{2}}{1+z}$

5 Solve following system equations:

$$
\left\{\begin{array}{l}
3 x+4 y=26 \\
\sqrt{x^{2}+y^{2}-4 x+2 y+5}+\sqrt{x^{2}+y^{2}-20 x-10 y+125}=10
\end{array}\right.
$$

