AoPS Community

VMO 2021
www.artofproblemsolving.com/community/c1676123
by parmenides51, LQD_QN2020, DNCT1, jacks3000

- Day 1

1 Let $\left(x_{n}\right)$ define by $x_{1} \in\left(0 ; \frac{1}{2}\right)$ and $x_{n+1}=3 x_{n}^{2}-2 n x_{n}^{3}$ for all $n \geq 1$.
a) Prove that $\left(x_{n}\right)$ convergence to 0 .
b) For each $n \geq 1$, let $y_{n}=x_{1}+2 x_{2}+\cdots+n x_{n}$. Prove that $\left(y_{n}\right)$ has a limit.

2 Find all function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x) f(y)=f(x y-1)+y f(x)+x f(y)
$$

for all $x, y \in \mathbb{R}$
3 Let $\triangle A B C$ is not an isosceles triangle and is an acute triangle, $A D, B E, C F$ be the altitudes and H is the orthocenter .Let I is the circumcenter of $\triangle H E F$ and let K, J is the midpoint of $B C, E F$ respectively.Let $H J$ intersects (I) again at G and $G K$ intersects (I) at $L \neq G$.
a) Prove that $A L$ is perpendicular to $E F$.
b) Let $A L$ intersects $E F$ at M, the line $I M$ intersects the circumcircle $\triangle I E F$ again at $N, D N$ intersects $A B, A C$ at P and Q respectively then prove that $P E, Q F, A K$ are concurrent.

4 For an integer $n \geq 2$, let $s(n)$ be the sum of positive integers not exceeding n and not relatively prime to n.
a) Prove that $s(n)=\frac{n}{2}(n+1-\varphi(n))$, where $\varphi(n)$ is the number of integers positive cannot exceed n and are relatively prime to n.
b) Prove that there is no integer $n \geq 2$ such that $s(n)=s(n+2021)$

- Day 2

5 Let the polynomial $P(x)=a_{21} x^{21}+a_{20} x^{20}+\cdots+a_{1} x+a_{0}$ where $1011 \leq a_{i} \leq 2021$ for all $i=0,1,2, \ldots, 21$. Given that $P(x)$ has an integer root and there exists an positive real number c such that $\left|a_{k+2}-a_{k}\right| \leq c$ for all $k=0,1, \ldots, 19$.
a) Prove that $P(x)$ has an only integer root.
b) Prove that

$$
\sum_{k=0}^{10}\left(a_{2 k+1}-a_{2 k}\right)^{2} \leq 440 c^{2}
$$

6 A student divides all 30 marbles into 5 boxes numbered $1,2,3,4,5$ (after being divided, there may be a box with no marbles).
a) How many ways are there to divide marbles into boxes (are two different ways if there is a box with a different number of marbles)?
b) After dividing, the student paints those 30 marbles by a number of colors (each with the same color, one color can be painted for many marbles), so that there are no 2 marbles in the same box. have the same color and from any 2 boxes it is impossible to choose 8 marbles painted in 4 colors. Prove that for every division, the student must use no less than 10 colors to paint the marbles.
c) Show a division so that with exactly 10 colors the student can paint the marbles that satisfy the conditions in question b).

7 Let $A B C$ be an inscribed triangle in circle (O). Let D be the intersection of the two tangent lines of (O) at B and C. The circle passing through A and tangent to $B C$ at B intersects the median passing A of the triangle $A B C$ at G. Lines $B G, C G$ intersect $C D, B D$ at E, F respectively.
a) The line passing through the midpoint of $B E$ and $C F$ cuts $B F, C E$ at M, N respectively. Prove that the points A, D, M, N belong to the same circle.
b) Let $A D, A G$ intersect the circumcircle of the triangles $D B C, G B C$ at H, K respectively. The perpendicular bisectors of $H K, H E$, and $H F$ cut $B C, C A$, and $A B$ at R, P, and Q respectively. Prove that the points R, P, and Q are collinear.

