

AoPS Community

2021 Vietnam National Olympiad

VMO 2021

www.artofproblemsolving.com/community/c1676123 by parmenides51, LQD_QN2020, DNCT1, jacks3000

-	Day 1
1	Let (x_n) define by $x_1 \in \left(0; \frac{1}{2}\right)$ and $x_{n+1} = 3x_n^2 - 2nx_n^3$ for all $n \ge 1$.
	a) Prove that (x_n) convergence to 0.
	b) For each $n \ge 1$, let $y_n = x_1 + 2x_2 + \cdots + nx_n$. Prove that (y_n) has a limit.
2	Find all function $f : \mathbb{R} \to \mathbb{R}$ such that
	f(x)f(y) = f(xy - 1) + yf(x) + xf(y)
	for all $x,y\in\mathbb{R}$
3	Let $\triangle ABC$ is not an isosceles triangle and is an acute triangle, AD, BE, CF be the altitudes and H is the orthocenter .Let I is the circumcenter of $\triangle HEF$ and let K, J is the midpoint of BC, EF respectively.Let HJ intersects (I) again at G and GK intersects (I) at $L \neq G$. a) Prove that AL is perpendicular to EF . b) Let AL intersects EF at M , the line IM intersects the circumcircle $\triangle IEF$ again at N, DN intersects AB, AC at P and Q respectively then prove that PE, QF, AK are concurrent.
4	For an integer $n \ge 2$, let $s(n)$ be the sum of positive integers not exceeding n and not relatively prime to n . a) Prove that $s(n) = \frac{n}{2}(n+1-\varphi(n))$, where $\varphi(n)$ is the number of integers positive cannot exceed n and are relatively prime to n . b) Prove that there is no integer $n \ge 2$ such that $s(n) = s(n+2021)$
-	Day 2
5	Let the polynomial $P(x) = a_{21}x^{21} + a_{20}x^{20} + \dots + a_1x + a_0$ where $1011 \le a_i \le 2021$ for all $i = 0, 1, 2, \dots, 21$. Given that $P(x)$ has an integer root and there exists an positive real number c such that $ a_{k+2} - a_k \le c$ for all $k = 0, 1, \dots, 19$.
	a) Prove that $P(x)$ has an only integer root.
	b) Prove that
	10

- 6 A student divides all 30 marbles into 5 boxes numbered 1, 2, 3, 4, 5 (after being divided, there may be a box with no marbles).
 a) How many ways are there to divide marbles into boxes (are two different ways if there is a box with a different number of marbles)?
 b) After dividing, the student paints those 30 marbles by a number of colors (each with the same color, one color can be painted for many marbles), so that there are no 2 marbles in the same box. have the same color and from any 2 boxes it is impossible to choose 8 marbles painted in 4 colors. Prove that for every division, the student must use no less than 10 colors to paint the marbles.
 c) Show a division so that with exactly 10 colors the student can paint the marbles that satisfy the conditions in question b).
- 7 Let *ABC* be an inscribed triangle in circle (*O*). Let *D* be the intersection of the two tangent lines of (*O*) at *B* and *C*. The circle passing through *A* and tangent to *BC* at *B* intersects the median passing *A* of the triangle *ABC* at *G*. Lines *BG*, *CG* intersect *CD*, *BD* at *E*, *F* respectively.
 a) The line passing through the midpoint of *BE* and *CF* cuts *BF*, *CE* at *M*, *N* respectively. Prove that the points *A*, *D*, *M*, *N* belong to the same circle.
 b) Let *AD*, *AG* intersect the circumcircle of the triangles *DBC*, *GBC* at *H*, *K* respectively. The perpendicular bisectors of *HK*, *HE*, and *HF* cut *BC*, *CA*, and *AB* at *R*, *P*, and *Q* respectively. Prove that the points *R*, *P*, and *Q* are collinear.

Art of Problem Solving is an ACS WASC Accredited School.