

AoPS Community

2020 Argentine National Olympiad

Argentine National Olympiad 2020

www.artofproblemsolving.com/community/c1676769 by parmenides51

-	Level 3
-	Day 1
1	For every positive integer n , let $S(n)$ be the sum of the digits of n . Find, if any, a 171-digit positive integer n such that 7 divides $S(n)$ and 7 divides $S(n+1)$.
2	Let $k \ge 1$ be an integer. Determine the smallest positive integer n such that some cells on an $n \times n$ board can be painted black so that in each row and in each column there are exactly k black cells, and furthermore, the black cells do not share a side or a vertex with another black square.
	Clarification: You have to answer n based on k .
3	Let ABC be a right isosceles triangle with right angle at A . Let E and F be points on AB and AC respectively such that $\angle ECB = 30^{\circ}$ and $\angle FBC = 15^{\circ}$. Lines CE and BF intersect at P and line AP intersects side BC at D . Calculate the measure of angle $\angle FDC$.
-	Day 2
4	Let a and b be positive integers such that $\frac{5a^4+a^2}{b^4+3b^2+4}$ is an integer. Show that a is not prime.
5	Determine the highest possible value of:
	$S = a_1 a_2 a_3 + a_4 a_5 a_6 + \ldots + a_{2017} a_{2018} a_{2019} + a_{2020}$
	where $(a_1, a_2, a_3,, a_{2020})$ is a permutation of $(1, 2, 3,, 2020)$.
	Clarification: In S , each term, except the last one, is the multiplication of three numbers.
6	Let $n \ge 3$ be an integer. Lucas and Matías play a game in a regular <i>n</i> -sided polygon with a vertex marked as a trap. Initially Matías places a token at one vertex of the polygon. In each step, Lucas says a positive integer and Matías moves the token that number of vertices clockwise or counterclockwise, at his choice.
	a) Determine all the $n \ge 3$ such that Matías can locate the token and move it in such a way as to never fall into the trap, regardless of the numbers Lucas says. Give the strategy to Matías.
	b) Determine all the $n \ge 3$ such that Lucas can force Matías to fall into the trap. Give the strategy

b) Determine all the $n\geq 3$ such that Lucas can force Matías to fall into the trap. Give the strategy to Lucas.

AoPS Community

2020 Argentine National Olympiad

Note. The two players know the value of n and see the polygon.

Act of Problem Solving is an ACS WASC Accredited School.