## AoPS Community

## Argentine National Olympiad 2020

www.artofproblemsolving.com/community/c1676769
by parmenides51

## - Level 3

## - $\quad$ Day 1

1 For every positive integer $n$, let $S(n)$ be the sum of the digits of $n$. Find, if any, a 171-digit positive integer $n$ such that 7 divides $S(n)$ and 7 divides $S(n+1)$.

2 Let $k \geq 1$ be an integer. Determine the smallest positive integer $n$ such that some cells on an $n \times n$ board can be painted black so that in each row and in each column there are exactly $k$ black cells, and furthermore, the black cells do not share a side or a vertex with another black square.

Clarification: You have to answer n based on $k$.
3 Let $A B C$ be a right isosceles triangle with right angle at $A$. Let $E$ and $F$ be points on $\mathrm{A} B$ and $A C$ respectively such that $\angle E C B=30^{\circ}$ and $\angle F B C=15^{\circ}$. Lines $C E$ and $B F$ intersect at $P$ and line $A P$ intersects side $B C$ at $D$. Calculate the measure of angle $\angle F D C$.

- Day 2
$4 \quad$ Let $a$ and $b$ be positive integers such that $\frac{5 a^{4}+a^{2}}{b^{4}+3 b^{2}+4}$ is an integer. Show that $a$ is not prime.
5 Determine the highest possible value of:

$$
S=a_{1} a_{2} a_{3}+a_{4} a_{5} a_{6}+\ldots+a_{2017} a_{2018} a_{2019}+a_{2020}
$$

where $\left(a_{1}, a_{2}, a_{3}, \ldots, a_{2020}\right)$ is a permutation of $(1,2,3, \ldots, 2020)$.
Clarification: In $S$, each term, except the last one, is the multiplication of three numbers.
$6 \quad$ Let $n \geq 3$ be an integer. Lucas and Matías play a game in a regular $n$-sided polygon with a vertex marked as a trap. Initially Matías places a token at one vertex of the polygon. In each step, Lucas says a positive integer and Matías moves the token that number of vertices clockwise or counterclockwise, at his choice.
a) Determine all the $n \geq 3$ such that Matías can locate the token and move it in such a way as to never fall into the trap, regardless of the numbers Lucas says. Give the strategy to Matías.
b) Determine all the $n \geq 3$ such that Lucas can force Matías to fall into the trap. Give the strategy to Lucas.

Note. The two players know the value of $n$ and see the polygon.

