Art of Problem Solving

## AoPS Community

Problems from 2020 Thailand Mathematical Olympiad
www.artofproblemsolving.com/community/c1678538
by MarkBcc168, Mathmick51

- Day 1
$1 \quad$ Show that $\varphi(2 n) \mid n$ ! for all positive integer $n$.
2 There are 63 houses at the distance of $1,2,3, \ldots, 63 \mathrm{~km}$ from the north pole, respectively. Santa Clause wants to distribute vaccine to each house. To do so, he will let his assistants, 63 elfs named $E_{1}, E_{2}, \ldots, E_{63}$, deliever the vaccine to each house; each elf will deliever vaccine to exactly one house and never return. Suppose that the elf $E_{n}$ takes $n$ minutes to travel 1 km for each $n=1,2, \ldots, 63$, and that all elfs leave the north pole simultaneously. What is the minimum amount of time to complete the delivery?

3 Suppose that $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ satisfies the equation

$$
f(a+b+c+d)=f(a)+f(b)+f(c)+f(d)
$$

for all $a, b, c, d$ that are the four sides of some tangential quadrilateral. Show that $f(x+y)=$ $f(x)+f(y)$ for all $x, y \in \mathbb{R}^{+}$.

4 Let $\triangle A B C$ be a triangle with altitudes $A D, B E, C F$. Let the lines $A D$ and $E F$ meet at $P$, let the tangent to the circumcircle of $\triangle A D C$ at $D$ meet the line $A B$ at $X$, and let the tangent to the circumcircle of $\triangle A D B$ at $D$ meet the line $A C$ at $Y$. Prove that the line $X Y$ passes through the midpoint of $D P$.

5 You have an $n \times n$ grid and want to remove all edges of the grid by the sequence of the following moves. In each move, you can select a cell and remove exactly three edges surrounding that cell; in particular, that cell must have at least three remaining edges for the operation to be valid. For which positive integers $n$ is this possible?

- Day 2

6 Let the incircle of an acute triangle $\triangle A B C$ touches $B C, C A$, and $A B$ at points $D, E$, and $F$, respectively. Place point $K$ on the side $A B$ so that $D F$ bisects $\angle A D K$, and place point $L$ on the side $A B$ so that $E F$ bisects $\angle B E L$.
-Prove that $\triangle A L E \sim \triangle A E B$.
-Prove that $F K=F L$.
7 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{Z}$ satisfying the inequality $(f(x))^{2}+(f(y))^{2} \leq 2 f(x y)$ for all reals $x, y$.

8 For all positive real numbers $a, b, c$ with $a+b+c=3$, prove the inequality

$$
\frac{a^{6}}{c^{2}+2 b^{3}}+\frac{b^{6}}{a^{2}+2 c^{3}}+\frac{c^{6}}{b^{2}+2 a^{3}} \geq 1
$$

9 Let $n, k$ be positive integers such that $n>k$. There is a square-shaped plot of land, which is divided into $n \times n$ grid so that each cell has the same size. The land needs to be plowed by $k$ tractors; each tractor will begin on the lower-left corner cell and keep moving to the cell sharing a common side until it reaches the upper-right corner cell. In addition, each tractor can only move in two directions: up and right. Determine the minimum possible number of unplowed cells.

10 Determine all polynomials $P(x)$ with integer coefficients which satisfies $P(n) \mid n!+2$ for all postive integer $n$.

