AoPS Community

Brazil National Olympiad 2015

www.artofproblemsolving.com/community/c168606
by Amir Hossein, Seventh

- Day 1

1 Let $\triangle A B C$ be an acute-scalene triangle, and let N be the center of the circle wich pass trough the feet of altitudes. Let D be the intersection of tangents to the circumcircle of $\triangle A B C$ at B and C. Prove that A, D and N are collinear iff $\measuredangle B A C=45$.

2 Consider $S=\{1,2,3, \cdots, 6 n\}, n>1$. Find the largest k such that the following statement is true: every subset A of S with $4 n$ elements has at least k pairs (a, b), $a<b$ and b is divisible by a.

3 Given a natural $n>1$ and its prime fatorization $n=p_{1}^{\alpha 1} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, its false derived is defined by

$$
f(n)=\alpha_{1} p_{1}^{\alpha_{1}-1} \alpha_{2} p_{2}^{\alpha_{2}-1} \ldots \alpha_{k} p_{k}^{\alpha_{k}-1} .
$$

Prove that there exist infinitely many naturals n such that $f(n)=f(n-1)+1$.

- Day 2

4 Let n be a integer and let $n=d_{1}>d_{2}>\cdots>d_{k}=1$ its positive divisors.
a) Prove that

$$
d_{1}-d_{2}+d_{3}-\cdots+(-1)^{k-1} d_{k}=n-1
$$

iff n is prime or $n=4$.
b) Determine the three positive integers such that

$$
d_{1}-d_{2}+d_{3}-\ldots+(-1)^{k-1} d_{k}=n-4 .
$$

5 Is that true that there exist a polynomial $f(x)$ with rational coefficients, not all integers, with degree $n>0$, a polynomial $g(x)$, with integer coefficients, and a set S with $n+1$ integers such that $f(t)=g(t)$ for all $t \in S$?

6 Let $\triangle A B C$ be a scalene triangle and X, Y and Z be points on the lines $B C, A C$ and $A B$, respectively, such that $\measuredangle A X B=\measuredangle B Y C=\measuredangle C Z A$. The circumcircles of $B X Z$ and $C X Y$ intersect at P. Prove that P is on the circumference which diameter has ends in the ortocenter H and in the baricenter G of $\triangle A B C$.

