

AoPS Community

2015 Brazil National Olympiad

Brazil National Olympiad 2015

www.artofproblemsolving.com/community/c168606 by Amir Hossein, Seventh

-	Day 1
1	Let $\triangle ABC$ be an acute-scalene triangle, and let N be the center of the circle wich pass trough the feet of altitudes. Let D be the intersection of tangents to the circumcircle of $\triangle ABC$ at B and C . Prove that A , D and N are collinear iff $\measuredangle BAC = 45$.
2	Consider $S = \{1, 2, 3, \dots, 6n\}$, $n > 1$. Find the largest k such that the following statement is true: every subset A of S with $4n$ elements has at least k pairs (a, b) , $a < b$ and b is divisible by a .
3	Given a natural $n > 1$ and its prime fatorization $n = p_1^{\alpha 1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, its <i>false derived</i> is defined by $f(n) = \alpha_1 p_1^{\alpha_1 - 1} \alpha_2 p_2^{\alpha_2 - 1} \dots \alpha_k p_k^{\alpha_k - 1}.$
	Prove that there exist infinitely many naturals n such that $f(n) = f(n-1) + 1$.
-	Day 2
4	Let <i>n</i> be a integer and let $n = d_1 > d_2 > \cdots > d_k = 1$ its positive divisors. a) Prove that $d_1 - d_2 + d_3 - \cdots + (-1)^{k-1}d_k = n - 1$ iff <i>n</i> is prime or $n = 4$. b) Determine the three positive integers such that $d_1 - d_2 + d_3 - \ldots + (-1)^{k-1}d_k = n - 4$.
5	Is that true that there exist a polynomial $f(x)$ with rational coefficients, not all integers, with degree $n > 0$, a polynomial $g(x)$, with integer coefficients, and a set S with $n + 1$ integers such that $f(t) = g(t)$ for all $t \in S$?

6 Let $\triangle ABC$ be a scalene triangle and *X*, *Y* and *Z* be points on the lines *BC*, *AC* and *AB*, respectively, such that $\measuredangle AXB = \measuredangle BYC = \measuredangle CZA$. The circumcircles of *BXZ* and *CXY* intersect at *P*. Prove that *P* is on the circumference which diameter has ends in the ortocenter *H* and in the baricenter *G* of $\triangle ABC$.