AoPS Community

Taiwan National Olympiad 2001

www.artofproblemsolving.com/community/c1686652 by parmenides51, Pascual2005, nayel

- Day 1

1 Let A be a set with at least 3 integers, and let M be the maximum element in A and m the minimum element in A. it is known that there exist a polynomial P such that: $m<P(a)<M$ for all a in A. And also $p(m)<p(a)$ for all a in $A-(m, M)$. Prove that $n<6$ and there exist integers b and c such that $p(x)+x^{2}+b x+c$ is cero in A.

2 Let $a_{1}, a_{2}, \ldots, a_{15}$ be positive integers for which the number $a_{k}^{k+1}-a_{k}$ is not divisible by 17 for any $k=1, \ldots, 15$. Show that there are integers $b_{1}, b_{2}, \ldots, b_{15}$ such that:
(i) $b_{m}-b_{n}$ is not divisible by 17 for $1 \leq m<n \leq 15$, and
(ii) each b_{i} is a product of one or more terms of $\left(a_{i}\right)$.

3 Let $n \geq 3$ be an integer and let $A_{1}, A_{2}, \ldots, A_{n}$ be n distinct subsets of $S=\{1,2, \ldots, n\}$. Show that there exists $x \in S$ such that the n subsets $A_{i}-\{x\}, i=1,2, \ldots n$ are also disjoint.
what i have is we may assume that the union of the $A_{i} \mathrm{~s}$ is S.

- Day 2

4 Let Γ be the circumcircle of a fixed triangle $A B C$, and let M and N be the midpoints of the arcs $B C$ and $C A$, respectively. For any point X on the arc $A B$, let O_{1} and O_{2} be the incenters of $\triangle X A C$ and $\triangle X B C$, and let the circumcircle of $\triangle X O_{1} O_{2}$ intersect Γ at X and Q. Prove that triangles $Q N O_{1}$ and $Q M O_{2}$ are similar, and find all possible locations of point Q.
$5 \quad$ Let $f(n)=\sum_{k=0}^{n-1} x^{k} y^{n-1-k}$ with, x, y real numbers. If $f(n), f(n+1), f(n+2), f(n+3)$, are integers for some n, prove $f(n)$ is integer for all n.

6 Suppose that $n-1$ items $A_{1}, A_{2}, \ldots, A_{n-1}$ have already been arranged in the increasing order, and that another item A_{n} is to be inserted to preserve the order. What is the expected number of comparisons necessary to insert A_{n} ?

