

## **AoPS Community**

## 2001 Taiwan National Olympiad

## **Taiwan National Olympiad 2001**

www.artofproblemsolving.com/community/c1686652 by parmenides51, Pascual2005, navel

| – Day 1 |
|---------|
|---------|

- 1 Let *A* be a set with at least 3 integers, and let *M* be the maximum element in *A* and *m* the minimum element in *A*. it is known that there exist a polynomial *P* such that: m < P(a) < M for all *a* in *A*. And also p(m) < p(a) for all *a* in A (m, M). Prove that n < 6 and there exist integers *b* and *c* such that  $p(x) + x^2 + bx + c$  is cero in *A*.
- 2 Let  $a_1, a_2, ..., a_{15}$  be positive integers for which the number  $a_k^{k+1} a_k$  is not divisible by 17 for any k = 1, ..., 15. Show that there are integers  $b_1, b_2, ..., b_{15}$  such that: (i)  $b_m - b_n$  is not divisible by 17 for  $1 \le m < n \le 15$ , and (ii) each  $b_i$  is a product of one or more terms of  $(a_i)$ .
- **3** Let  $n \ge 3$  be an integer and let  $A_1, A_2, \ldots, A_n$  be *n* distinct subsets of  $S = \{1, 2, \ldots, n\}$ . Show that there exists  $x \in S$  such that the n subsets  $A_i \{x\}, i = 1, 2, \ldots, n$  are also disjoint.

what i have is we may assume that the union of the  $A_i$ s is S.

- Day 2
- **4** Let  $\Gamma$  be the circumcircle of a fixed triangle *ABC*, and let *M* and *N* be the midpoints of the arcs *BC* and *CA*, respectively. For any point *X* on the arc *AB*, let  $O_1$  and  $O_2$  be the incenters of  $\triangle XAC$  and  $\triangle XBC$ , and let the circumcircle of  $\triangle XO_1O_2$  intersect  $\Gamma$  at *X* and *Q*. Prove that triangles  $QNO_1$  and  $QMO_2$  are similar, and find all possible locations of point *Q*.
- **5** Let  $f(n) = \sum_{k=0}^{n-1} x^k y^{n-1-k}$  with, x, y real numbers. If f(n), f(n + 1), f(n + 2), f(n + 3), are integers for some n, prove f(n) is integer for all n.
- **6** Suppose that n 1 items  $A_1, A_2, ..., A_{n-1}$  have already been arranged in the increasing order, and that another item  $A_n$  is to be inserted to preserve the order. What is the expected number of comparisons necessary to insert  $A_n$ ?

Art of Problem Solving is an ACS WASC Accredited School.